
Open Charge Point Protocol 1.6

Table of Contents
1. Scope . 6

2. Terminology and Conventions . 7

2.1. Conventions . 7

2.2. Definitions . 7

2.3. Abbreviations . 8

2.4. References . 9

3. Introduction . 10

3.1. Document structure . 10

3.2. Feature Profiles . 10

3.3. General views of operation . 13

3.4. Local Authorization & Offline Behavior . 15

3.5. Transaction in relation to Energy Transfer Period . 18

3.6. Transaction-related messages . 20

3.7. Connector numbering . 21

3.8. ID Tokens . 21

3.9. Parent idTag. 22

3.10. Reservations . 22

3.11. Vendor-specific data transfer . 23

3.12. Smart Charging . 23

3.13. Time zones . 33

4. Operations Initiated by Charge Point . 34

4.1. Authorize . 34

4.2. Boot Notification. 34

4.3. Data Transfer. 35

4.4. Diagnostics Status Notification . 36

4.5. Firmware Status Notification . 37

4.6. Heartbeat . 37

4.7. Meter Values . 38

4.8. Start Transaction . 39

4.9. Status Notification . 40

4.10. Stop Transaction. 45

5. Operations Initiated by Central System . 48

5.1. Cancel Reservation. 48

5.2. Change Availability . 48

5.3. Change Configuration . 49

5.4. Clear Cache . 49

5.5. Clear Charging Profile . 50

5.6. Data Transfer. 50

5.7. Get Composite Schedule . 50

5.8. Get Configuration . 51

5.9. Get Diagnostics . 51

5.10. Get Local List Version . 52

5.11. Remote Start Transaction . 52

5.12. Remote Stop Transaction . 53

5.13. Reserve Now . 54

5.14. Reset . 55

5.15. Send Local List . 56

5.16. Set Charging Profile . 56

5.17. Trigger Message . 59

5.18. Unlock Connector . 60

5.19. Update Firmware . 60

6. Messages. 62

6.1. Authorize.req . 62

6.2. Authorize.conf . 62

6.3. BootNotification.req . 62

6.4. BootNotification.conf. 63

6.5. CancelReservation.req . 64

6.6. CancelReservation.conf. 64

6.7. ChangeAvailability.req . 65

6.8. ChangeAvailability.conf . 65

6.9. ChangeConfiguration.req . 65

6.10. ChangeConfiguration.conf . 66

6.11. ClearCache.req . 66

6.12. ClearCache.conf . 66

6.13. ClearChargingProfile.req . 67

6.14. ClearChargingProfile.conf . 67

6.15. DataTransfer.req . 68

6.16. DataTransfer.conf . 68

6.17. DiagnosticsStatusNotification.req . 68

6.18. DiagnosticsStatusNotification.conf . 69

6.19. FirmwareStatusNotification.req. 69

6.20. FirmwareStatusNotification.conf . 69

6.21. GetCompositeSchedule.req . 69

6.22. GetCompositeSchedule.conf . 70

6.23. GetConfiguration.req. 71

6.24. GetConfiguration.conf . 71

6.25. GetDiagnostics.req . 71

6.26. GetDiagnostics.conf . 72

6.27. GetLocalListVersion.req . 72

6.28. GetLocalListVersion.conf . 73

6.29. Heartbeat.req . 73

6.30. Heartbeat.conf . 73

6.31. MeterValues.req . 73

6.32. MeterValues.conf . 74

6.33. RemoteStartTransaction.req . 74

6.34. RemoteStartTransaction.conf . 74

6.35. RemoteStopTransaction.req . 75

6.36. RemoteStopTransaction.conf . 75

6.37. ReserveNow.req . 75

6.38. ReserveNow.conf . 76

6.39. Reset.req . 76

6.40. Reset.conf . 76

6.41. SendLocalList.req . 77

6.42. SendLocalList.conf . 78

6.43. SetChargingProfile.req . 78

6.44. SetChargingProfile.conf . 78

6.45. StartTransaction.req . 79

6.46. StartTransaction.conf . 80

6.47. StatusNotification.req . 80

6.48. StatusNotification.conf . 81

6.49. StopTransaction.req . 81

6.50. StopTransaction.conf . 82

6.51. TriggerMessage.req . 82

6.52. TriggerMessage.conf . 83

6.53. UnlockConnector.req. 83

6.54. UnlockConnector.conf . 83

6.55. UpdateFirmware.req . 83

6.56. UpdateFirmware.conf . 84

7. Types . 85

7.1. AuthorizationData . 85

7.2. AuthorizationStatus . 85

7.3. AvailabilityStatus . 86

7.4. AvailabilityType . 86

7.5. CancelReservationStatus . 86

7.6. ChargePointErrorCode . 87

7.7. ChargePointStatus . 87

7.8. ChargingProfile . 89

7.9. ChargingProfileKindType . 91

7.10. ChargingProfilePurposeType . 91

7.11. ChargingProfileStatus . 92

7.12. ChargingRateUnitType . 92

7.13. ChargingSchedule . 92

7.14. ChargingSchedulePeriod . 93

7.15. CiString20Type . 94

7.16. CiString25Type . 94

7.17. CiString50Type . 94

7.18. CiString255Type . 95

7.19. CiString500Type . 95

7.20. ClearCacheStatus . 95

7.21. ClearChargingProfileStatus . 95

7.22. ConfigurationStatus . 96

7.23. DataTransferStatus . 96

7.24. DiagnosticsStatus . 96

7.25. FirmwareStatus . 97

7.26. GetCompositeScheduleStatus . 97

7.27. IdTagInfo . 98

7.28. IdToken . 98

7.29. KeyValue . 98

7.30. Location . 99

7.31. Measurand . 99

7.32. MessageTrigger. 100

7.33. MeterValue . 101

7.34. Phase . 101

7.35. ReadingContext . 102

7.36. Reason. 102

7.37. RecurrencyKindType . 103

7.38. RegistrationStatus . 103

7.39. RemoteStartStopStatus . 103

7.40. ReservationStatus . 104

7.41. ResetStatus . 104

7.42. ResetType . 104

7.43. SampledValue . 105

7.44. TriggerMessageStatus . 106

7.45. UnitOfMeasure . 106

7.46. UnlockStatus . 107

7.47. UpdateStatus . 107

7.48. UpdateType . 108

7.49. ValueFormat . 108

8. Firmware and Diagnostics File Transfer . 109

8.1. Download Firmware . 109

8.2. Upload Diagnostics. 109

9. Standard Configuration Key Names & Values . 110

9.1. Core Profile . 110

9.2. Local Auth List Management Profile . 119

9.3. Reservation Profile . 120

9.4. Smart Charging Profile . 120

Appendix A: New in OCPP 1.6 . 122

A.1. Updated/New Messages:. 122

Interface description between Charge Point and Central System

Document Version 1.6

Document Status FINAL

Document Release Date 2015-10-08

1

Copyright © 2010 – 2015 Open Charge Alliance. All rights reserved.

This document is made available under the *Creative Commons Attribution-
NoDerivatives 4.0 International Public License*
(https://creativecommons.org/licenses/by-nd/4.0/legalcode).

2

https://creativecommons.org/licenses/by-nd/4.0/legalcode

Version History

Version Date Author Description

1.6 2015-10-08 Robert de Leeuw
IHomer

Reinier Lamers
The New Motion

Brendan McMahon
ESB ecars

Lambert Muhlenberg
Alfen

Patrick Rademakers
IHomer

Sergiu Tcaciuc
smartlab

Klaas van Zuuren
ElaadNL

1.6 Final Release.

For changes relative
to 1.5, see appendix
New in OCPP 1.6.

3

Version Date Author Description

1.5 2012-06-01 Franc Buve Specification ready
for release. Includes:

CR-01
Authentication/author
ization lists

CR-02 Interval meter
readings

CR-03 Charge point
reservation

CR-04 Generic data
transfer

CR-05 More detailed
status notifications

CR-06 Query
configuration
parameters

CR-07 Timestamp in
BootNotification
mandatory

CR-08 Response to
StartTransaction.req
with status other than
Accepted is not clearly
defined

CR-09 Increase size of
firmwareVersion in
BootNotification

1.2 2011-02-21 Franc Buve

4

Version Date Author Description

1.0 2010-10-19 Franc Buve Final version
approved by e-laad.nl.
Identical to version
0.12.

5

1. Scope
This document defines the protocol used between a Charge Point and Central System. If the protocol
requires a certain action or response from one side or the other, then this will be stated in this
document.

The specification does not define the communication technology. Any technology will do, as long as it
supports TCP/IP connectivity.

6

2. Terminology and Conventions

2.1. Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119]], subject to the following additional clarification clause:

The phrase “valid reasons in particular circumstances” relating to the usage of the terms “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, and “NOT RECOMMENDED” is to be taken to mean technically
valid reasons, such as the absence of necessary hardware to support a function from a charge point
design: for the purposes of this specification it specifically excludes decisions made on commercial, or
other non-technical grounds, such as cost of implementation, or likelihood of use.

All sections and appendixes, except “Scope” and “Terminology and Conventions”, are normative,
unless they are explicitly indicated to be informative.

2.2. Definitions
This section contains the terminology that is used throughout this document.

Central System Charge Point Management System: the central system that manages
Charge Points and has the information for authorizing users for using its
Charge Points.

CiString Case Insensitive String. Only printable ASCII allowed.

Charge Point The Charge Point is the physical system where an electric vehicle can be
charged. A Charge Point has one or more connectors.

Charging Profile Generic Charging Profile, used for different types of Profiles. Contains
information about the Profile and holds the Charging Schedule. In future
versions of OCPP it might hold more than 1 Charging Schedule.

Charging Schedule Part of a Charging Profile. Defines a block of charging Power or Current
limits. Can contain a start time and length.

Charging Session Part of a transaction during which the EV is allowed to request energy

Composite Charging
Schedule

The charging schedule as calculated by the Charge Point. It is the result
of the calculation of all active schedules and possible local limits present
in the Charge Point. Also IEC 15118 limits might be taken into account.

7

Connector The term “Connector”, as used in this specification, refers to an
independently operated and managed electrical outlet on a Charge Point.
This usually corresponds to a single physical connector, but in some
cases a single outlet may have multiple physical socket types and/or
tethered cable/connector arrangements to facilitate different vehicle
types (e.g. four-wheeled EVs and electric scooters).

Control Pilot signal signal used by a Charge Point to inform EV of maximum Charging power
or current limit, as defined by [IEC61851-1].

Energy Transfer Period Time during which an EV chooses to take offered energy, or return it.
Multiple Energy Transfer Periods are possible during a Transaction.

Local Controller Optional device in a smart charging infrastructure. Located on the
premises with a number of Charge Points connected to it. Sits between
the Charge Points and Central System. Understands and speaks OCPP
messages. Controls the Power or Current in other Charge Point by using
OCPP smart charging messages. Can be a Charge Point itself.

OCPP-J OCPP via JSON over WebSocket

OCPP-S OCPP via SOAP

Phase Rotation Defines the wiring order of the phases between the energy meter (or if
absent, the grid connection), and the Charge Point connector.

Transaction The part of the charging process that starts when all relevant
preconditions (e.g. authorization, plug inserted) are met, and ends at the
moment when the Charge Point irrevocably leaves this state.

String Case Sensitive String. Only printable ASCII allowed. All strings in
messages and enumerations are case sensitive, unless explicitly stated
otherwise.

2.3. Abbreviations

CSL Comma Separated List

CPO Charge Point Operator

DNS Domain Name System

DST Daylight Saving Time

EV Electrical Vehicle

EVSE Electric Vehicle Supply Equipment [IEC61851-1]

FTP(S) File Transport Protocol (Secure)

HTTP(S) HyperText Transport Protocol (Secure)

ICCID Integrated Circuit Card Identifier

8

IMSI International Mobile Subscription Identity

JSON Java Simple Object Notation

NAT Native Address Translation

PDU Protocol Data Unit

SC Smart Charging

SOAP Simple Object Access Protocol

URL Uniform Resource Locator

RST 3 phase power connection, Standard Reference Phasing

RTS 3 phase power connection, Reversed Reference Phasing

SRT 3 phase power connection, Reversed 240 degree rotation

STR 3 phase power connection, Standard 120 degree rotation

TRS 3 phase power connection, Standard 240 degree rotation

TSR 3 phase power connection, Reversed 120 degree rotation

UTC Coordinated Universal Time

2.4. References

[IEC61851-1] “IEC 61851-1 2010: Electric vehicle conductive charging system - Part 1: General
requirements” https://webstore.iec.ch/publication/6029

[OCPP1.5] “OCPP 1.5: Open Charge Proint Protocol 1.5”
http://www.openchargealliance.org/downloads/

[OCPP_1.6CT] “OCPP 1.6 Compliance testing” http://www.openchargealliance.org/downloads/

[OCPP_IMP_J] “OCPP JSON Specification” http://www.openchargealliance.org/downloads/

[OCPP_IMP_S] “OCPP SOAP Specification” http://www.openchargealliance.org/downloads/

[RFC2119] “Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March
1997. http://www.ietf.org/rfc/rfc2119.txt

9

https://webstore.iec.ch/publication/6029
http://www.openchargealliance.org/downloads/
http://www.openchargealliance.org/downloads/
http://www.openchargealliance.org/downloads/
http://www.openchargealliance.org/downloads/
http://www.ietf.org/rfc/rfc2119.txt

3. Introduction
This is the specification for OCPP version 1.6.

OCPP is a standard open protocol for communication between Charge Points and a Central System and
is designed to accommodate any type of charging technique.

OCPP 1.6 introduces new features to accommodate the market: Smart Charging, OCPP using JSON over
Websockets, better diagnostics possibilities (Reason), more Charge Point Statuses and TriggerMessage.
OCPP 1.6 is based on OCPP 1.5, with some new features and a lot of textual improvements,
clarifications and fixes for all known ambiguities. Due to improvements and new features, OCPP 1.6 is
not backward compatible with OCPP 1.5.

For a full list of changes, see: New in OCPP 1.6.

Some basic concepts are explained in the sections below in this introductory chapter. The chapters:
Operations Initiated by Charge Point and Operations Initiated by Central System describe the
operations supported by the protocol. The exact messages and their parameters are detailed in the
chapter: Messages and data types are described in chapter: Types. Defined configuration keys are
described in the chapter: Standard Configuration Key Names & Values.

3.1. Document structure
With the introduction of OCPP 1.6, there are two different flavours of OCPP; next to the SOAP based
implementations, there is the possibility to use the much more compact JSON alternative. To avoid
confusion in communication on the type of implementation we recommend using the distinct suffixes
-J and -S to indicate JSON or SOAP. In generic terms this would be OCPP-J for JSON and OCPP-S for SOAP.

To support the different flavours, the OCPP standard is divided in multiple documents. The base
document (the one you are reading now) contains the technical protocol specification. The technical
protocol specification must be used with one of the transport protocol specifications. the OCPP SOAP
Specification contains the implementation specification needed to make a OCPP-S implementation. For
OCPP-J, the OCPP JSON Specification must be used.

For improved interoperabillity between the Central Systems and Charge Points, it is adviced to meet
the requirements stated in the OCPP 1.6 Compliance testing documentation.

3.2. Feature Profiles
This section is informative.

In OCPP 1.6 features and associated messages are grouped in profiles. Depending on the required
functionality, implementers can choose to implement one or more of the following profiles.

10

Profile name Description

Core Basic Charge Point functionality comparable with
OCPP 1.5 [OCPP1.5] without support for firmware
updates, local authorization list management and
reservations.

Firmware Management Support for firmware update management and
diagnostic log file download.

Local Auth List Management Features to manage the local authorization list in
Charge Points.

Reservation Support for reservation of a Charge Point.

Smart Charging Support for basic Smart Charging, for instance
using control pilot.

Remote Trigger Support for remote triggering of Charge Point
initiated messages

These profiles can be used by a customer to determine if a OCPP 1.6 product has the required
functionality for their business case. Compliance testing will test per profile if a product is compliant
with the OCPP 1.6 specification.

Implementation of the Core profile is required. Other profiles are optional.

When the profiles Core, Firmware Management, Local Auth List Management and Reservation are
implemented, all functions originating from OCPP 1.5 [OCPP1.5] are covered.

The grouping of all messages in their profiles can be found in the table below.

Message Core Firmware
Managemen

t

Local Auth
List

Managemen
t

Reservation Smart
Charging

Remote
Trigger

Authorize X

BootNotificat
ion

X

ChangeAvail
ability

X

ChangeConfi
guration

X

ClearCache X

DataTransfer X

11

Message Core Firmware
Managemen

t

Local Auth
List

Managemen
t

Reservation Smart
Charging

Remote
Trigger

GetConfigura
tion

X

Heartbeat X

MeterValues X

RemoteStart
Transaction

X

RemoteStopT
ransaction

X

Reset X

StartTransac
tion

X

StatusNotific
ation

X

StopTransact
ion

X

UnlockConne
ctor

X

GetDiagnosti
cs

X

DiagnosticsSt
atusNotificat
ion

X

FirmwareSta
tusNotificati
on

X

UpdateFirm
ware

X

GetLocalList
Version

X

SendLocalLis
t

X

CancelReserv
ation

X

12

Message Core Firmware
Managemen

t

Local Auth
List

Managemen
t

Reservation Smart
Charging

Remote
Trigger

ReserveNow X

ClearChargin
gProfile

X

GetComposit
eSchedule

X

SetChargingP
rofile

X

TriggerMess
age

X

The support for the specific charging profiles is reported by the SupportedFeatureProfiles configuration
key.

3.3. General views of operation
This section is informative.

The following figures describe the general views of the operations between Charge Point and Central
System for two cases:

1. a Charge Point requesting authentication of a card and sending charge transaction status,

2. Central System requesting a Charge Point to update its firmware.

The arrow labels in the following figures indicate the PDUs exchanged during the invocations of the
operations. These PDUs are defined in detail in the Messages section.

13

Figure 1. Sequence Diagram: Example of starting and stopping a transaction

When a Charge Point needs to charge an electric vehicle, it needs to authenticate the user first before
the charging can be started. If the user is authorized the Charge Point informs the Central System that
it has started with charging.

When a user wishes to unplug the electric vehicle from the Charge Point, the Charge Point needs to
verify that the user is either the one that initiated the charging or that the user is in the same group
and thus allowed to terminate the charging. Once authorized, the Charge Point informs the Central
System that the charging has been stopped.

NOTE
A Charge Point MUST NOT send an Authorize.req before stopping a transaction if the
presented idTag is the same as the idTag presented to start the transaction.

14

Figure 2. Sequence Diagram: Example of a firmware update

When a Charge Point needs to be updated with new firmware, the Central System informs the Charge
Point of the time at which the Charge Point can start downloading the new firmware. The Charge Point
SHALL notify the Central System after each step as it downloads and installs the new firmware.

3.4. Local Authorization & Offline Behavior
This section is normative.

In the event of unavailability of the communications or even of the Central System, the Charge Point is
designed to operate stand-alone. In that situation, the Charge Point is said to be offline.

To improve the experience for users, a Charge Point MAY support local authorization of identifiers,
using an Authorization Cache and/or a Local Authorization List.

This allows (a) authorization of a user when offline, and (b) faster (apparent) authorization response
time when communication between Charge Point and Central System is slow.

The LocalAuthorizeOffline configuration key controls whether a Charge Point will authorize a user
when offline using the Authorization Cache and/or the Local Authorization List.

The LocalPreAuthorize configuration key controls whether a Charge Point will use the Authorization
Cache and/or the Local Authorization List to start a transaction without waiting for an authorization
response from the Central System.

A Charge Point MAY support the (automatic) authorization of any presented identifier when offline, to
avoid refusal of charging to bona-fide users that cannot be explicitly authorized by Local Authorization
List/Authorization Cache entries. This functionality is explained in more detail in Unknown Offline
Authorization.

15

3.4.1. Authorization Cache

A Charge Point MAY implement an Authorization Cache that autonomously maintains a record of
previously presented identifiers that have been successfully authorized by the Central System.
(Successfully meaning: a response received on a message containing an idTag)

If implemented, the Authorization Cache SHOULD conform to the following semantics:

• The Cache contains all the latest received identifiers (i.e. valid and NOT-valid).

• The Cache is updated using all received IdTagInfo (from Authorize.conf, StartTransaction.conf and
StopTransaction.conf)

• When the validity of a Cache entry expires, it SHALL be changed to expired in the Cache.

• When an IdTagInfo is received for an identifier in the Cache, it SHALL be updated.

• If new identifier authorization data is received and the Authorization Cache is full, the Charge
Point SHALL remove any NOT-valid entries, and then, if necessary, the oldest valid entries to make
space for the new entry.

• Cache values SHOULD be stored in non-volatile memory, and SHOULD be persisted across reboots
and power outages.

• When an identifier is presented that is stored in the cache as NOT-valid, and the Charge Point is
online: an Authorize.req SHOULD be sent to the central System to check the current state of the
identifier.

Operation of the Authorization Cache, when present, is reported (and controlled, where possible) by
the AuthorizationCacheEnabled configuration key.

3.4.2. Local Authorization List

The Local Authorization List is a list of identifiers that can be synchronized with the Central System.

The list contains the authorization status of all (or a selection of) identifiers and the authorization
status/expiration date.

Identifiers in the Local Authorization list can be marked as valid, expired, (temporarily) blocked, or
blacklisted, corresponding to IdTagInfo status values Accepted/ConcurrentTx, Expired, Blocked, and
Invalid, respectively.

These values may be used to provide more fine grained information to users (e.g. by display message)
during local authorization.

The Local Authorization List SHOULD be maintained by the Charge Point in non-volatile memory, and
SHOULD be persisted across reboots and power outages.

A Charge Point that supports Local Authorization List SHOULD implement the configuration key:
LocalAuthListMaxLength This gives the Central System a way to known the the maximum possible

16

number of Local Authorization List elements in a Charge Point

The Charge Point indicates whether the Local Authorization List is supported by the presence or
absence of the LocalAuthListManagement element in the value of the SupportedFeatureProfiles
configuration key. Whether the Local Authorization List is enabled is reported and controlled by the
LocalAuthListEnabled configuration key.

The Central System can synchronize this list by either (1) sending a complete list of identifiers to
replace the Local Authorization List or (2) by sending a list of changes (add, update, delete) to apply to
the Local Authorization List. The operations to support this are Get Local List Version and Send Local
List.

Figure 3. Sequence Diagram: Example of a full local authorization list update

Figure 4. Sequence Diagram: Example of a differential local authorization list update

The Charge Point SHALL NOT modify the contents of the Authorization List by any other means than
upon a the receipt of a SendLocalList PDU from the Central System.

NOTE

Conflicts between the local authorization list and the validity reported in, for instance,
a StartTransaction.conf message might occur. When this happens the Charge Point
SHALL inform the Central System by sending a StatusNotification with ConnectorId set
to 0, and ErrorCode set to 'LocalListConflict'.

3.4.3. Relation between Authorization Cache and Local Authorization List

The Authorization Cache and Local Authorization List are distinct logical data structures. Identifiers
known in the Local Authorization List SHALL NOT be added to the Authorization Cache.

Where both Authorization Cache and Local Authorization List are supported, a Charge Point SHALL
treat Local Authorization List entries as having priority over Authorization Cache entries for the same
identifiers.

17

3.4.4. Unknown Offline Authorization

When offline, a Charge Point MAY allow automatic authorization of any "unknown" identifiers that
cannot be explicitly authorized by Local Authorization List or Authorization Cache entries. Identifiers
that are present in a Local Authorization List that have a status other than “Accepted” (Invalid,
Blocked, Expired) MUST be rejected. Identifiers that were valid but are apparently expired due to
passage of time MUST also be rejected.

Operation of the Unknown Offline Authorization capability, when supported, is reported (and
controlled, where possible) by the AllowOfflineTxForUnknownId configuration key.

When connection the the Central Server is restored, the Charge Point SHALL send a Start Transaction
request for any transaction that was authorized offline, as required by transaction-related message
handling. When the authorization status in the StartTransaction.conf is not Accepted, and the
transaction is still ongoing, the Charge Point SHOULD:

• when StopTransactionOnInvalidId is set to true: stop the transaction normally as stated in Stop
Transaction. The Reason field in the Stop Transaction request should be set to DeAuthorized. If the
Charge Point has the possibility to lock the Charging Cable, it SHOULD keep the Charging Cable
locked until the owner presents his identifier.

• when StopTransactionOnInvalidId is set to false: only stop energy delivery to the vehicle.

NOTE

In the case of an invalid identifier, an operator MAY choose to charge the EV with a
minimum amount of energy so the EV is able to drive away. This amount is controlled
by the optional configuration key: MaxEnergyOnInvalidId.

3.5. Transaction in relation to Energy Transfer Period
This section is informative.

The Energy Transfer Period is a period of time during wich energy is transferred between the EV and
the EVSE. There MAY be multiple Energy Transfer Periods during a Transaction.

Multiple Energy Transfer Periods can be separated by either:

• an EVSE-initiated supense of transfer during which de EVSE does not offer energy transfer

• an EV-initiated suspense of transfer during which the EV remains electrically connected to the
EVSE

• an EV-initiated suspense of transfer during which the EV is not electrically connected to the EVSE.

A Central System MAY deduce the start and end of an Energy Transfer Period from the MeterValues
that are sent during the Transaction.

18

19

Figure 5. OCPP Charging Session and transaction definition

3.6. Transaction-related messages
This section is normative.

The Charge Point SHOULD deliver transaction-related messages to the Central System in chronological
order as soon as possible. Transaction-related messages are StartTransaction.req, StopTransaction.req
and periodic or clock-aligned MeterValues.req messages.

When offline, the Charge Point MUST queue any transaction-related messages that it would have sent
to the Central System if the Charge Point had been online.

In the event that a Charge Point has transaction-related messages queued to be sent to the Central
System, new messages that are not transaction-related MAY be delivered immediately without waiting
for the queue to be emptied. It is therefore allowed to send, for example, an Authorize request or a
Notifications request before the transaction-related message queue has been emptied, so that
customers are not kept waiting and urgent notifications are not delayed.

The delivery of new transaction-related messages SHALL wait until the queue has been emptied. This
is to ensure that transaction-related messages are always delivered in chronological order.

When the Central System receives a transaction-related message that was queued on the Charge Point
for some time, the Central System will not be aware that this is a historical message, other than by
inference given that the various timestamps are significantly in the past. It SHOULD process such a
message as any other.

3.6.1. Error responses to transaction-related messages

It is permissible for the Charge Point to skip a transaction-related message if and only if the Central
System repeatedly reports a `failure to process the message'. Such a stipulation is necessary, because
otherwise the requirement to deliver every transaction-related message in chronological order would
entail that the Charge Point cannot deliver any transaction-related messages to the Central System
after a software bug causes the Central System not to acknowledge one of the Charge Point’s
transaction-related messages.

What kind of response, or failure to respond, constitutes a `failure to process the message' is defined
in the documents OCPP JSON Specification and OCPP SOAP Specification.

The number of times and the interval with which the Charge Point should retry such failed
transaction-related messages MAY be configured using the TransactionMessageAttempts and
TransactionMessageRetryInterval configuration keys.

When the Charge Point encounters a first failure to deliver a certain transaction-related message, it
SHOULD send this message again as long as it keeps resulting in a failure to process the message and it
has not yet encountered as many failures to process the message for this message as specified in its

20

TransactionMessageAttempts configuration key. Before every retransmission, it SHOULD wait as many
seconds as specified in its TransactionMessageRetryInterval key, multiplied by the number of preceding
transmissions of this same message.

As an example, consider a Charge Point that has the value "3" for the TransactionMessageAttempts
configuration key and the value "60" for the TransactionMessageRetryInterval configuration key. It
sends a StopTransaction message and detects a failure to process the message in the Central System.
The Charge Point SHALL wait for 60 seconds, and resend the message. In the case when there is a
second failure, the Charge Point SHALL wait for 120 seconds, before resending the message. If this
final attempt fails, the Charge Point SHOULD discard the message and continue with the next
transaction-related message, if there is any.

3.7. Connector numbering
This section is normative.

To enable Central System to be able to address all the connectors of a Charge Point, ConnectorIds MUST
always be numbered in the same way.

Connectors numbering (ConnectorIds) MUST be as follows:

• ID of the first connector MUST be 1

• Additional connectors MUST be sequentially numbered (no numbers may be skipped)

• ConnectorIds MUST never be higher than the total number of connectors of a Charge Point

• For operations intiated by the Central System, ConnectorId 0 is reserved for addressing the entire
Charge Point.

• For operations initiated by the Charge Point (when reporting), ConnectorId 0 is reserved for the
Charge Point main controller.

Example: A Charge Point with 3 connectors: All connectors MUST be numbered with the IDs: 1, 2 and 3.
It is advisable to number the connectors of a Charge Point in a logical way: from left to right, top to
bottom incrementing.

3.8. ID Tokens
This section is normative.

In most cases, IdToken data acquired via local token reader hardware is usually a (4 or 7 byte) UID
value of a physical RFID card, typically represented as 8/14 hexadecimal digit characters.

However, IdTokens sent to Charge Points by Central Systems for remotely initiated charging sessions
may commonly be (single use) virtual transaction authorization codes, or virtual RFID tokens that
deliberately use a non-standard UID format to avoid possible conflict with real UID values.

21

Also, IdToken data used as ParentIds may often use a shared central account identifier for the
ParentId, instead of a UID of the first/master RFID card of an account.

Therefore, message data elements of the IdToken class (including ParentId) MAY contain any data,
subject to the constraints of the data-type (CiString20Type), that is meaningful to a Central System (e.g.
for the purpose of identifying the initiator of charging activity), and Charge Points MUST NOT make
any presumptions as to the format or content of such data (e.g. by assuming that it is a UID-like value
that must be hex characters only and/or an even number of digits).

NOTE

To promote interoperability, based on common practice to date in the case of IdToken
data representing physical ISO 14443 compatible RFID card UIDs, it is RECOMMENDED
that such UIDs be represented as hex representations of the UID bytes. According to
ISO14443-3, byte 0 should come first in the hex string.

3.9. Parent idTag
This section is normative.

A Central System has the ability to treat a set of identity tokens as a “group”, thereby allowing any one
token in the group to start a transaction and for the same token, or another token in the same group, to
stop the transaction. This supports the common use-cases of families or businesses with multiple
drivers using one or more shared electric vehicles on a single recharging contract account.

Tokens (idTags) are grouped for authorization purposes by specifying a common group identifier in
the optional ParentId element in IdTagInfo: two idTags are considered to be in the same group if their
ParentId Tags match.

NOTE

Even though the ParentId has the same nominal data type (IdToken) as an idTag, the
value of this element may not be in the common format of IdTokens and/or may not
represent an actual valid IdToken (e.g. it may be a common shared "account number"):
therefore, the ParentId value SHOULD NOT be used for comparison against a presented
Token value (unless it also occurs as an idTag value).

3.10. Reservations
This section is informative.

Reservation of a Charge Point is possible using the Reserve Now operation. This operation reserves the
Charge Point until a certain expiry time for a specific idTag. A parent idTag may be included in the
reservation to support ‘group’ reservations. It is possible to reserve a specific connector on a Charge
Point or to reserve any connector on a Charge Point. A reservation is released when the reserved idTag
is used on the reserved connector (when specified) or on any connector (when unspecified) or when
the expiry time is reached or when the reservation is explicitly canceled.

22

3.11. Vendor-specific data transfer
This section is informative.

The mechanism of vendor-specific data transfer allows for the exchange of data or messages not
standardized in OCPP . As such, it offers a framework within OCPP for experimental functionality that
may find its way into future OCPP versions. Experimenting can be done without creating new (possibly
incompatible) OCPP dialects. Secondly, it offers a possibility to implement additional functionality
agreed upon between specific Central System and Charge Point vendors.

The operation Vendor Specific Data MAY be initiated either by the Central System or by the Charge
Point.

IMPORTANT

Please use with extreme caution and only for optional functionality, since it will
impact your compatibility with other systems that do not make use of this
option. We recommend mentioning the usage explicitly in your documentation
and/or communication. Please consider consulting the Open Charge Alliance
before turning to this option to add functionality.

3.12. Smart Charging
This section is normative.

With Smart Charging a Central System gains the ability to influence the charging power or current of a
specific EV, or the total allowed energy consumption on an entire Charge Point / a group of Charge
Points, for instance, based on a grid connection, energy availability on the gird or the wiring of a
building. Influencing the charge power or current is based on energy transfer limits at specific points
in time. Those limits are combined in a Charging Profile.

3.12.1. Charging profile purposes

A charging profile consists of a charging schedule, which is basically a list of time intervals with their
maximum charge power or current, and some values to specify the time period and recurrence of the
schedule.

There are three different types of charging profiles, depending on their purpose:

• ChargePointMaxProfile

In load balancing scenarios, the Charge Point has one or more local charging profiles that limit the
power or current to be shared by all connectors of the Charge Point. The Central System SHALL
configure such a profile with ChargingProfilePurpose set to “ChargePointMaxProfile”.
ChargePointMaxProfile can only be set at Charge Point ConnectorId 0.

• TxDefaultProfile

23

Default schedules for new transactions MAY be used to impose charging policies. An example could be
a policy that prevents charging during the day. For schedules of this purpose, ChargingProfilePurpose
SHALL be set to TxDefaultProfile.

If TxDefaultProfile is set to ConnectorId 0, the TxDefaultProfile is applicable to all Connectors.

If ConnectorId is set >0, it only applies to that specific connector.

In the event a TxDefaultProfile for connector 0 is installed, and the Central System sends a new profile
with ConnectorId >0, the TxDefaultProfile SHALL be replaced only for that specific connector.

• TxProfile

If a transaction-specific profile with purpose TxProfile is present, it SHALL overrule the default
charging profile with purpose TxDefaultProfile for the duration of the current transaction only. After
the transaction is stopped, the profile SHOULD be deleted. If there is no transaction active on the
connector specified in a charging profile of type TxProfile, then the Charge Point SHALL discard it and
return an error status in SetChargingProfile.conf.

The final schedule constraints that apply to a transaction are determined by merging the profiles with
purposes ChargePointMaxProfile with the profile TxProfile or the TxDefaultProfile in case no profile of
purpose TxProfile is provided. TxProfile SHALL only be set at Charge Point ConnectorId >0.

3.12.2. Stacking charging profiles

It is allowed to stack charging profiles of the same charging profile purpose in order to describe
complex calendars. For example, one can define a charging profile of purpose TxDefaultProfile with a
duration and recurrence of one week that allows full power or current charging on weekdays from
23:00h to 06:00h and from 00:00h to 24:00h in weekends and reduced power or current charging at
other times. On top of that, one can define other TxDefaultProfiles that define exception to this rule, for
example for holidays.

Precedence of charging profiles is determined by the value of their StackLevel parameter. At any point
in time the prevailing charging profile SHALL be the charging profile with the highest stackLevel
among the profiles that are valid at that point in time, as determined by their validFrom and validTo
parameters.

To avoid conflicts, the existence of multiple Charging Profiles with the same stackLevel and Purposes
in a Charge Point is not allowed. Whenever a Charge Point receives a Charging Profile with a
stackLevel and Purpose that already exists in the Charge Point, the Charge Point SHALL replace the
existing profile.

NOTE

In the case an updated charging profile (with the same stackLevel and purpose) is sent
with a validFrom DateTime in the future, the Charge Point SHALL replace the installed
profile and SHALL revert to default behavior until validFrom is reached. It is
RECOMMENDED to provide a start time in the past to prevent gaps.

24

3.12.3. Combining charging profile purposes

The Composite Schedule that will guide the charging level is a combination of the prevailing Charging
Profiles of the different chargingProfilePurposes.

This Composite Schedule is calculated by taking the minimum value for each time interval. Note that
time intervals do not have to be of fixed length, nor do they have to be the same for every charging
profile purpose. This means that a resulting Composite Schedule MAY contain intervals of different
lengths.

At any point in time, the available power or current in the Composite Schedule, which is the result of
merging the schedules of charging profiles ChargePointMaxProfile and TxDefaultProfile (or TxProfile),
SHALL be less than or equal to lowest value of available power or current in any of the merged
schedules.

In the case the Charge Point is equipped with more than one Connector, the limit value of
ChargePointMaxProfile is the limit for all connectors combined. The combined energy flow of all
connectors SHALL NOT be greater then the limit set by ChargePointMaxProfile.

3.12.4. Smart Charging Use Cases

This section is informative.

There may be many different uses for smart charging. The following three typical kinds of smart
charging will be used to illustrate the possible behavior of smart charging:

• Load balancing

• Central smart charging

• Local smart charging

There are more complex use cases possible in which two or more of the above use cases are combined
into one more complex system.

Load Balancing

This section is informative.

The Load Balancing use case is about internal load balancing within the Charge Point, the Charge Point
controls the charging schedule per connector. The Charge Point is configured with a fixed limit, for
example the maximum current of the connection to the grid.

The optional charging schedule field minChargingRate may be used by the Charge Point to optimize the
power distribution between the connectors. The parameter informs the Charge Point that charging
below minChargingRate is inefficient, giving the possibility to select another balancing strategy.

25

Figure 6. Load balancing Smart Charging topology

Central Smart Charging

This section is informative.

With Central smart charging the constraints on the charging schedule, per transaction, are determined
by the Central System. The Central System uses these schedules to stay within limits imposed by any
external system. The Central System directly controls the limits on the connectors of the Charge Points.

Figure 7. Central Smart Charging topology

Central smart charging assumes that charge limits are controlled by the Central System. The Central
System receives a capacity forecast from the grid operator (DSO) or another source in one form or
another and calculates charging schedules for some or all charging transactions, details of which are
out of scope of this specification.

The Central System imposes charging limits on connectors. In response to a StartTransaction.req PDU
The Central System may choose to set charging limits to the transaction using the TxProfile

Central Smart Charging can be done with a Control Pilot signal, albeit with some limitations, because

26

an EV cannot communicate its charging via the Control Pilot signal. In analogy to the Local Smart
Charging use case, a connector can execute a charging schedule by the Control Pilot signal. This is
illustrated in the Figure below:

Figure 8. Sequence Diagram: Central Smart Charging

Explanation for the above figure:

• After authorization the connector will set a maximum current to use via the Control Pilot signal.
This limit is based on a (default) charging profile that the connector had previously received from
the Central System. The EV starts charging and a StartTransaction.req is sent to the Central System.

• While charging is in progress the connector will continuously adapt the maximum current or
power according to the charging profile. Optionally, at any point in time the Central System may
send a new charging profile for the connector that shall be used as a limit schedule for the EV.

Local Smart Charging

The Local Smart Charging use case describes a use case in which smart charging enabled Charge Points
have charging limits controlled locally by a Local Controller, not the Central System. The use case for
local smart charging is about limiting the amount of power that can be used by a group of Charge

27

Points, to a certain maximum. A typical use would be a number of Charge Points in a parking garage
where the rating of the connection to the grid is less than the sum the ratings of the Charge Points.
Another application might be that the Local Controller receives information about the availability of
power from a DSO or a local smart grid node.

Figure 9. Local Smart Charging topology

Local smart charging assumes the existence of a Local Controller to control a group of Charge Points.
The Local Controller is a logical component. It may be implemented either as a separate physical
component or as part of a ‘master’ Charge Point controlling a number of other Charge Points. The Local
Control implements the OCPP protocol and is a proxy for the group members' OCPP messages, and may
or may not have any connectors of its own.

In the case of local smart charging the Local Controller imposes charging limits on a Charge Point.
These limits may be changed dynamically during the charging process in order to keep the power
consumption of the group of Charge Points within the group limits. The group limits may be pre-
configured in the Local Controller or may have been configured by the Central System.

The optional charging schedule field minChargingRate may be used by the Local Controller to optimize
the power distribution between the connectors. The parameter informs the Local Controller that
charging below minChargingRate is inefficient, giving the possibility to select another balancing
strategy.

The following diagram illustrates the sequence of messages to set charging limits on Charge Points in a
Local Smart Charging group. These limits can either be pre-configured in the Local Controller in one
way or another, or they can be set by the Central System. The Local Controller contains the logic to
distribute this capacity among the connected connectors by adjusting their limits as needed.

28

Figure 10. Presetting Local Group Limits

The next diagram describe the sequence of messages for a typical case of Local Smart Charging. For
simplicity’s sake, this case only involves one connector.

29

Figure 11. Sequence Diagram: Local Smart Charging

Explanation for the above figure:

• After authorization the connector will set a maximum current to use, via the Control Pilot signal.
This limit is based on a (default) charging profile that the connector had previously received from
the Local Controller. The EV starts charging and sends a StartTransaction.req.

• The StartTransaction.req is sent to the Central System via the Local Controller, so that also the Local
Controller knows a transaction has started. The Local Controller just passes on the messages
between Charge Point and Central System, so that the Central System can address all the Local
Smart Charging group members individually.

• While charging is in progress the connector will continuously adapt the maximum current
according to the charging profile.
Optionally, at any point in time the Local Controller may send a new charging profile to the
connector that shall be used as a limit schedule for the EV.

30

3.12.5. Discovery of Charge Point Capabilities

This section is normative.

The smart charging options defined can be used in extensive ways. Because of the possible limitations
and differences in capabilities between Charge Points, the Central System needs to be able to discover
the Charge Point specific capabilities. This is ensured by the standardized configuration keys as
defined in this chapter. A Smart Charging enabled Charge Point SHALL implement, and support
reporting of, the following configuration keys through the GetConfiguration.req PDU

Smart charging configuration keys

ChargeProfileMaxStackLevel

ChargingScheduleAllowedChargingRateUnit

ChargingScheduleMaxPeriods

MaxChargingProfilesInstalled

A full list of all standardized configuration keys can be found in chapter Standard Configuration Key
Names & Values.

3.12.6. Offline behavior of smart charging

This section is normative.

If a Charge Point goes offline after having received a transaction-specific charging profile with purpose
TxProfile, then it SHALL continue to use this profile for the duration of the transaction.

If a Charge Point goes offline before a transaction is started or before a transaction-specific charging
profile with purpose TxProfile was received, then it SHALL use the charging profiles that are available.
Zero or more of the following charging profile purposes MAY have been previously received from the
Central System:

*ChargePointMaxProfile

*TxDefaultProfile

See section Combining Charging Profile Purposes for a description on how to combine charging
profiles with different purposes.

If a Charge Point goes offline, without having any charging profiles, then it SHALL execute a
transaction as if no constraints apply.

3.12.7. Example data structure for smart charging

This section is informative

The following data structure describes a daily default profile that limits the power to 6 kW between

31

08:00h and 20:00h.

ChargingProfile

chargingProfileId 100

stackLevel 0

chargingProfilePurpose TxDefaultProfile

chargingProfileKind Recurring

recurrencyKind Daily

chargingSchedule (List of 1
ChargingSchedule
elements)

ChargingSchedule

duration 86400 (= 24 hours)

startSchedule 2013-01-01T00:00Z

chargingRateUnit W

chargingSchedulePeriod (List of 3
ChargingSchedulePeriod
elements)

ChargingSchedulePeri
od

startPeriod 0 (=00:00)

limit 11000

numberPhases 3

startPeriod 28800 (=08:00)

limit 6000

numberPhases 3

startPeriod 72000 (=20:00)

limit 11000

numberPhases 3

IMPORTANT

The amount of phases used during charging is limited by the capabilities of: The
Charge Point, EV and Cable between CP and EV. If any of these 3 is not capable of
3 phase charging, the EV will be charged using 1 phase only.

32

IMPORTANT

Switching the number of used phases during a schedule or charging session
should be done with care. Some EVs may not support this and changing the
amount of phases may result in physical damage. With the configuration key:
ConnectorSwitch3to1PhaseSupported The Charge Point can tell if it supports
switching the amount of phases during a transaction.

TIP
On days on which DST goes into or out of effect, a special profile might be needed (e.g. for
relative profiles).

3.13. Time zones
This section is informative.

OCPP does not prescribe the use of a specific time zone for time values. However, it is strongly
recommended to use UTC for all time values to improve interoperability between Central Systems and
Charge Points.

33

4. Operations Initiated by Charge Point

4.1. Authorize

Figure 12. Sequence Diagram: Authorize

Before the owner of an electric vehicle can start or stop charging, the Charge Point has to authorize the
operation. The Charge Point SHALL only supply energy after authorization. When stopping a
Transaction, the Charge Point SHALL only send an Authorize.req when the identifier used for stopping
the transaction is different from the identifier that started the transaction.

Authorize.req SHOULD only be used for the authorization of an identifier for charging.

A Charge Point MAY authorize identifier locally without involving the Central System, as described in
Local Authorization List. If an idTag presented by the user is not present in the Local Authorization List
or Authorization Cache, then the Charge Point SHALL send an Authorize.req PDU to the Central System
to request authorization. If the idTag is present in the Local Authorization List or Authorization Cache,
then the Charge Point MAY send an Authorize.req PDU to the Central System.

Upon receipt of an Authorize.req PDU, the Central System SHALL respond with an Authorize.conf PDU.
This response PDU SHALL indicate whether or not the idTag is accepted by the Central System. If the
Central System accepts the idTag then the response PDU MAY include a parentIdTag and MUST include
an authorization status value indicating acceptance or a reason for rejection.

If Charge Point has implemented an Authorization Cache, then upon receipt of an Authorize.conf PDU
the Charge Point SHALL update the cache entry, if the idTag is not in the Local Authorization List, with
the IdTagInfo value from the response as described under Authorization Cache.

4.2. Boot Notification

Figure 13. Sequence Diagram: Boot Notification

After start-up, a Charge Point SHALL send a request to the Central System with information about its
configuration (e.g. version, vendor, etc.). The Central System SHALL respond to indicate whether it will

34

accept the Charge Point.

The Charge Point SHALL send a BootNotification.req PDU each time it boots or reboots. Between the
physical power-on/reboot and the successful completion of a BootNotification, where Central System
returns Accepted or Pending, the Charge Point SHALL NOT send any other request to the Central
System. This includes cached messages that are still present in the Charge Point from before.

When the Central System responds with a BootNotification.conf with a status Accepted, the Charge
Point will adjust the heartbeat interval in accordance with the interval from the response PDU and it is
RECOMMENDED to synchronize its internal clock with the supplied Central System’s current time. If
the Central System returns something other than Accepted, the value of the interval field indicates the
minimum wait time before sending a next BootNotification request. If that interval value is zero, the
Charge Point chooses a waiting interval on its own, in a way that avoids flooding the Central System
with requests. A Charge Point SHOULD NOT send a BootNotification.req earlier, unless requested to do
so with a TriggerMessage.req.

If the Central System returns the status Rejected, the Charge Point SHALL NOT send any OCPP message
to the Central System until the aforementioned retry interval has expired. During this interval the
Charge Point may no longer be reachable from the Central System. It MAY for instance close its
communication channel or shut down its communication hardware. Also the Central System MAY close
the communication channel, for instance to free up system resources. While Rejected, the Charge Point
SHALL NOT respond to any Central System initiated message. the Central System SHOULD NOT initiate
any.

The Central System MAY also return a Pending registration status to indicate that it wants to retrieve or
set certain information on the Charge Point before the Central System will accept the Charge Point. If
the Central System returns the Pending status, the communication channel SHOULD NOT be closed by
either the Charge Point or the Central System. The Central System MAY send request messages to
retrieve information from the Charge Point or change its configuration. The Charge Point SHOULD
respond to these messages. The Charge Point SHALL NOT send request messages to the Central System
unless it has been instructed by the Central System to do so with a TriggerMessage.req request.

While in pending state, the following Central System initiated messages are not allowed:
RemoteStartTransaction.req and RemoteStopTransaction.req

NOTE

While not yet accepted by the Central System, the Charge Point may allow locally-
authorized transactions if it is configured to do so, as described in Local Authorization
& Offline Behavior. Parties who want to implement this behavior must realize that it is
uncertain if those transactions can ever be delivered to the Central System.

4.3. Data Transfer

35

Figure 14. Sequence Diagram: Data Transfer

If a Charge Point needs to send information to the Central System for a function not supported by
OCPP, it SHALL use the DataTransfer.req PDU.

The vendorId in the request SHOULD be known to the Central System and uniquely identify the
vendor-specific implementation. The VendorId SHOULD be a value from the reversed DNS namespace,
where the top tiers of the name, when reversed, should correspond to the publicly registered primary
DNS name of the Vendor organisation.

Optionally, the messageId in the request PDU MAY be used to indicate a specific message or
implementation.

The length of data in both the request and response PDU is undefined and should be agreed upon by all
parties involved.

If the recipient of the request has no implementation for the specific vendorId it SHALL return a status
‘UnknownVendor’ and the data element SHALL not be present. In case of a messageId mismatch (if
used) the recipient SHALL return status ‘UnknownMessageId’. In all other cases the usage of status
‘Accepted’ or ‘Rejected’ and the data element is part of the vendor-specific agreement between the
parties involved.

4.4. Diagnostics Status Notification

Figure 15. Sequence Diagram: Diagnostics Status Notification

Charge Point sends a notification to inform the Central System about the status of a diagnostics upload.
The Charge Point SHALL send a DiagnosticsStatusNotification.req PDU to inform the Central System
that the upload of diagnostics is busy or has finished successfully or failed. The Charge Point SHALL
only send the status Idle after receipt of a TriggerMessage for a Diagnostics Status Notification, when it
is not busy uploading diagnostics.

Upon receipt of a DiagnosticsStatusNotification.req PDU, the Central System SHALL respond with a
DiagnosticsStatusNotification.conf.

36

4.5. Firmware Status Notification

Figure 16. Sequence Diagram: Firmware Status Notification

A Charge Point sends notifications to inform the Central System about the progress of the firmware
update. The Charge Point SHALL send a FirmwareStatusNotification.req PDU for informing the Central
System about the progress of the downloading and installation of a firmware update. The Charge Point
SHALL only send the status Idle after receipt of a TriggerMessage for a Firmware Status Notification,
when it is not busy downloading/installing firmware.

Upon receipt of a FirmwareStatusNotification.req PDU, the Central System SHALL respond with a
FirmwareStatusNotification.conf.

4.6. Heartbeat

Figure 17. Sequence Diagram: Heartbeat

To let the Central System know that a Charge Point is still connected, a Charge Point sends a heartbeat
after a configurable time interval.

The Charge Point SHALL send a Heartbeat.req PDU for ensuring that the Central System knows that a
Charge Point is still alive.

Upon receipt of a Heartbeat.req PDU, the Central System SHALL respond with a Heartbeat.conf. The
response PDU SHALL contain the current time of the Central System, which is RECOMMENDED to be
used by the Charge Point to synchronize its internal clock.

The Charge Point MAY skip sending a Heartbeat.req PDU when another PDU has been sent to the
Central System within the configured heartbeat interval. This implies that a Central System SHOULD
assume availability of a Charge Point whenever a PDU has been received, the same way as it would
have, when it received a Heartbeat.req PDU.

NOTE
With JSON over WebSocket, sending heartbeats is not mandatory. However, for time
synchronization it is advised to at least send one heartbeat per 24 hour.

37

4.7. Meter Values

Figure 18. Sequence Diagram: Meter Values

A Charge Point MAY sample the energy meter or other sensor/transducer hardware to provide extra
information about its meter values. It is up to the Charge Point to decide when it will send meter
values. This can be configured using the ChangeConfiguration.req message to data acquisition
intervals and specify data to be acquired & reported.

The Charge Point SHALL send a MeterValues.req PDU for offloading meter values. The request PDU
SHALL contain for each sample:

1. The id of the Connector from which samples were taken. If the connectorId is 0, it is associated with
the entire Charge Point. If the connectorId is 0 and the Measurand is energy related, the sample
SHOULD be taken from the main energy meter.

2. The transactionId of the transaction to which these values are related, if applicable. If there is no
transaction in progress or if the values are taken from the main meter, then transaction id may be
omitted.

3. One or more meterValue elements, of type MeterValue, each representing a set of one or more
data values taken at a particular point in time.

Each MeterValue element contains a timestamp and a set of one or more individual sampledvalue
elements, all captured at the same point in time. Each sampledValue element contains a single value
datum. The nature of each sampledValue is determined by the optional measurand, context, location,
unit, phase, and format fields.

The optional measurand field specifies the type of value being measured/reported.

The optional context field specifies the reason/event triggering the reading.

The optional location field specifies where the measurement is taken (e.g. Inlet, Outlet).

The optional phase field specifies to which phase or phases of the electric installation the value applies.
The Charging Point SHALL report all phase number dependant values from the power meter (or grid
connection when absent) point of view.

NOTE The phase field is not applicable to all Measurands.

38

NOTE

Two measurands (Current.Offered and Power.Offered) are available that are strictly
speaking no measured values. They indicate the maximum amount of current/power
that is being offered to the EV and are intended for use in smart charging applications.

For individual connector phase rotation information, the Central System MAY query the
ConnectorPhaseRotation configuration key on the Charging Point via GetConfiguration. The Charge Point
SHALL report the phase rotation in respect to the grid connection. Possible values per connector are:
NotApplicable, Unknown, RST, RTS, SRT, STR, TRS and TSR. see section Standard Configuration Key
Names & Values for more information.

The EXPERIMENTAL optional format field specifies whether the data is represented in the normal
(default) form as a simple numeric value ("Raw"), or as “SignedData”, an opaque digitally signed
binary data block, represented as hex data. This experimental field may be deprecated and
subsequently removed in later versions, when a more mature solution alternative is provided.

To retain backward compatibility, the default values of all of the optional fields on a sampledValue
element are such that a value without any additional fields will be interpreted, as a register reading of
active import energy in Wh (Watt-hour) units.

Upon receipt of a MeterValues.req PDU, the Central System SHALL respond with a MeterValues.conf.

It is likely that The Central System applies sanity checks to the data contained in a MeterValues.req it
received. The outcome of such sanity checks SHOULD NOT ever cause the Central System to not
respond with a MeterValues.conf. Failing to respond with a MeterValues.conf will only cause the
Charge Point to try the same message again as specified in Error responses to transaction-related
messages.

4.8. Start Transaction

Figure 19. Sequence Diagram: Start Transaction

The Charge Point SHALL send a StartTransaction.req PDU to the Central System to inform about a
transaction that has been started. If this transaction ends a reservation (see Reserve Now operation),
then the StartTransaction.req MUST contain the reservationId.

Upon receipt of a StartTransaction.req PDU, the Central System SHOULD respond with a
StartTransaction.conf PDU. This response PDU MUST include a transaction id and an authorization
status value.

39

The Central System MUST verify validity of the identifier in the StartTransaction.req PDU, because the
identifier might have been authorized locally by the Charge Point using outdated information. The
identifier, for instance, may have been blocked since it was added to the Charge Point’s Authorization
Cache.

If Charge Point has implemented an Authorization Cache, then upon receipt of a StartTransaction.conf
PDU the Charge Point SHALL update the cache entry, if the idTag is not in the Local Authorization List,
with the IdTagInfo value from the response as described under Authorization Cache.

It is likely that The Central System applies sanity checks to the data contained in a StartTransaction.req
it received. The outcome of such sanity checks SHOULD NOT ever cause the Central System to not
respond with a StartTransaction.conf. Failing to respond with a StartTransaction.conf will only cause
the Charge Point to try the same message again as specified in Error responses to transaction-related
messages.

4.9. Status Notification

Figure 20. Sequence Diagram: Status Notification

A Charge Point sends a notification to the Central System to inform the Central System about a status
change or an error within the Charge Point. The following table depicts changes from a previous status
(left column) to a new status (upper row) upon which a Charge Point MAY send a StatusNotification.req
PDU to the Central System.

IMPORTANT

The Occupied state as defined in previous OCPP versions is no longer relevant.
The Occupied state is split into five new statuses: Preparing, Charging,
SuspendedEV, SuspendedEVSE and Finishing.

NOTE
EVSE is used in Status Notification instead of Socket or Charge Point for future
compatibility.

40

The following table describes which status transitions are possible:

1
Avail
able

2
Prepa
ring

3
Charg

ing

4
Suspe
nded

EV

5
Suspe
nded
EVSE

6
Finish

ing

7
Reser
ved

8
Unav
ailabl

e

9
Fault

ed

A Available A2 A3 A4 A5 A7 A8 A9

B Preparing B1 B3 B4 B5 B9

C Charging C1 C4 C5 C6 C8 C9

D SuspendedEV D1 D3 D5 D6 D8 D9

E SuspendedEV
SE

E1 E3 E4 E6 E8 E9

F Finishing F1 F2 F8 F9

G Reserved G1 G2 G8 G9

H Unavailable H1 H2 H3 H4 H5 H9

I Faulted I1 I2 I3 I4 I5 I6 I7 I8

NOTE
The table above is only applicable to ConnectorId > 0. For ConnectorId 0, only a limited
set is applicable, namely: Available, Unavailable and Faulted.

The next table describes events that may lead to a status change:

Not possible

A2 Usage is initiated (e.g. insert plug, bay occupancy
detection, present idTag, push start button, receipt
of a RemoteStartTransaction.req)

A3 Can be possible in a Charge Point without an
authorization means

A4 Similar to A3 but the EV does not start charging

A5 Similar to A3 but the EVSE does not allow charging

A7 A Reserve Now message is received that reserves
the connector

A8 A Change Availability message is received that sets
the connector to Unavailable

A9 A fault is detected that prevents further charging
operations

41

B1 Intended usage is ended (e.g. plug removed, bay
no longer occupied, second presentation of idTag,
time out on expected user action)

B3 All prerequisites for charging are met and
charging process starts

B4 All prerequisites for charging are met but EV does
not start charging

B5 All prerequisites for charging are met but EVSE
does not allow charging

B9 A fault is detected that prevents further charging
operations

C1 Charging session ends while no user action is
required (e.g. fixed cable was removed on EV side)

C4 Charging stops upon EV request (e.g. S2 is opened)

C5 Charging stops upon EVSE request (e.g. smart
charging restriction, transaction is invalidated by
the AuthorizationStatus in a
StartTransaction.conf)

C6 Charging session is stopped by user or a Remote
Stop Transaction message and further user action
is required (e.g. remove cable, leave parking bay)

C8 Charging session ends, no user action is required
and the connector is scheduled to become
Unavailable

C9 A fault is detected that prevents further charging
operations

D1 Charging session ends while no user action is
required

D3 Charging resumes upon request of the EV (e.g. S2
is closed)

D5 Charging is suspended by EVSE (e.g. due to a
smart charging restriction)

D6 Charging session is stopped and further user
action is required

D8 Charging session ends, no user action is required
and the connector is scheduled to become
Unavailable

42

D9 A fault is detected that prevents further charging
operations

E1 Charging session ends while no user action is
required

E3 Charging resumes because the EVSE restriction is
lifted

E4 The EVSE restriction is lifted but the EV does not
start charging

E6 Charging session is stopped and further user
action is required

E8 Charging session ends, no user action is required
and the connector is scheduled to become
Unavailable

E9 A fault is detected that prevents further charging
operations

F1 All user actions completed

F2 User restart charging session (e.g. reconnects
cable, presents idTag again)

F8 All user actions completed and the connector is
scheduled to become Unavailable

F9 A fault is detected that prevents further charging
operations

G1 Reservation expires or a Cancel Reservation
message is received

G2 Reservation identity is presented

G8 Reservation expires or a Cancel Reservation
message is received and the connector is
scheduled to become Unavailable

G9 A fault is detected that prevents further charging
operations

H1 Connector is set Available by a Change Availability
message

H2 Connector is set Available after a user had
interacted with the Charge Point

43

H3 Connector is set Available and no user action is
required to start charging

H4 Similar to H3 but the EV does not start charging

H5 Similar to H3 but the EVSE does not allow charging

H9 A fault is detected that prevents further charging
operations

I1-I8 Fault is resolved and status returns to the pre-
fault state

IMPORTANT

A Charge Point Connector MAY have any of the 9 statuses as shown in the table
above. For ConnectorId 0, only a limited set is applicable, namely: Available,
Unavailable and Faulted. The status of ConnectorId 0 has no direct connection to
the status of the individual Connectors (>0).

IMPORTANT
If charging is suspended both by the EV and the EVSE, status SuspendedEVSE
SHALL have precedence over status SuspendedEV.

IMPORTANT

When a Charge Point or a Connector is set to status Unavailable by a Change
Availability command, the 'Unavailable' status MUST be persistent across
reboots. The Charge Point MAY use the Unavailable status internally for other
purposes (e.g. while updating firmware or waiting for an initial Accepted
RegistrationStatus).

As the status Occupied has been split into five new statuses (Preparing, Charging, SuspendedEV,
SuspendedEVSE and Finishing), more StatusNotification.req PDUs will be sent from Charge Point to the
Central System. For instance, when a transaction is started, the Connector status would successively
change from Preparing to Charging with a short SuspendedEV and/or SuspendedEVSE inbetween,
possibly within a couple of seconds.

To limit the number of transitions, the Charge Point MAY omit sending a StatusNotification.req if it was
active for less time than defined in the optional configuration key MinimumStatusDuration. This way, a
Charge Point MAY choose not to send certain StatusNotification.req PDUs.

NOTE

A Charge Point manufacturer MAY have implemented a minimal status duration for
certain status transitions separate of the MinimumStatusDuration setting. The time set in
MinimumStatusDuration will be added to this default delay. Setting MinimumStatusDuration
to zero SHALL NOT override the default manufacturer’s minimal status duration.

IMPORTANT

Setting a high MinimumStatusDuration time may result in the delayed sending of
all StatusNotifications, since the Charge Point will only send the
StatusNotification.req once the MinimumStatusDuration time is passed.

44

The Charge Point MAY send a StatusNotification.req PDU to inform the Central System of fault
conditions. When the 'status' field is not Faulted, the condition should be considered a warning since
charging operations are still possible.

IMPORTANT

ChargePointErrorCode EVCommunicationError SHALL only be used with status
Preparing, SuspendedEV, SuspendedEVSE and Finishing and be treated as
warning.

When a Charge Point is configured with StopTransactionOnEVSideDisconnect set to false, a transaction is
running and the EV becomes disconnected on EV side, then a StatusNotification.req with the state:
SuspendedEV SHOULD be send to the Central System, with the 'errorCode' field set to: 'NoError'. The
Charge Point SHOULD add additional information in the 'info' field, Notifying the Central System with
the reason of suspension: 'EV side disconnected'. The current transaction is not stopped.

When a Charge Point is configured with StopTransactionOnEVSideDisconnect set to true, a transaction is
running and the EV becomes disconnected on EV side, then a StatusNotification.req with the state:
'Finishing' SHOULD be send to the Central System, with the 'errorCode' field set to: 'NoError'. The
Charge Point SHOULD add additional information in the 'info' field, Notifying the Central System with
the reason of stopping: 'EV side disconnected'. The current transaction is stopped.

When a Charge Point connects to a Central System after having been offline, it updates the Central
System about its status according to the following rules:

1. The Charge Point SHOULD send a StatusNotification.req PDU with its current status if the status
changed while the Charge Point was offline.

2. The Charge Point MAY send a StatusNotification.req PDU to report an error that occurred while the
Charge Point was offline.

3. The Charge Point SHOULD NOT send StatusNotification.req PDUs for historical status change events
that happened while the Charge Point was offline and that do not inform the Central System of
Charge Point errors or the Charge Point’s current status.

4. The StatusNotification.req messages MUST be sent in the order in which the events that they
describe occurred.

Upon receipt of a StatusNotification.req PDU, the Central System SHALL respond with a
StatusNotification.conf PDU.

4.10. Stop Transaction

45

Figure 21. Sequence Diagram: Stop Transaction

When a transaction is stopped, the Charge Point SHALL send a StopTransaction.req PDU, notifying to
the Central System that the transaction has stopped.

A StopTransaction.req PDU MAY contain an optional TransactionData element to provide more details
about transaction usage. The optional TransactionData element is a container for any number of
MeterValues, using the same data structure as the meterValue elements of the MeterValues.req PDU
(See section MeterValues)

Upon receipt of a StopTransaction.req PDU, the Central System SHALL respond with a
StopTransaction.conf PDU.

NOTE

The Central System cannot prevent a transaction from stopping. It MAY only inform the
Charge Point it has received the StopTransaction.req and MAY send information about
the idTag used to stop the transaction. This information SHOULD be used to update the
Authorization Cache, if implemented.

The idTag in the request PDU MAY be omitted when the Charge Point itself needs to stop the
transaction. For instance, when the Charge Point is requested to reset.

If a transaction is ended in a normal way (e.g. EV-driver presented his identification to stop the
transaction), the Reason element MAY be omitted and the Reason SHOULD be assumed 'Local'. If the
transaction is not ended normally, the Reason SHOULD be set to a correct value. As part of the normal
transaction termination, the Charge Point SHALL unlock the cable (if not permanently attached).

The Charge Point MAY unlock the cable (if not permanently attached) when the cable is disconnected
at the EV. If supported, this functionality is reported and controlled by the configuration key
UnlockConnectorOnEVSideDisconnect.

The Charge Point MAY stop a running transaction when the cable is disconnected at the EV. If
supported, this functionality is reported and controlled by the configuration key
StopTransactionOnEVSideDisconnect.

If StopTransactionOnEVSideDisconnect is set to false, the transaction SHALL not be stopped when the
cable is disconnected from the EV. If the EV is reconnected, energy transfer is allowed again. In this
case there is no mechanism to prevent other EVs from charging and disconnecting during that same
ongoing transaction. With UnlockConnectorOnEVSideDisconnect set to false, the Connector SHALL remain
locked at the Charge Point until the user presents the identifier.

46

By setting StopTransactionOnEVSideDisconnect to true, the transaction SHALL be stopped when the cable
is disconnected from the EV. If the EV is reconnected, energy transfer is not allowed until the
transaction is stopped and a new transaction is started. If UnlockConnectorOnEVSideDisconnect is set to
true, also the Connector on the Charge Point will be unlocked.

NOTE

If StopTransactionOnEVSideDisconnect is set to false, this SHALL have priority over
UnlockConnectorOnEVSideDisconnect. In other words: cables always remain locked when
the cable is disconnected at EV side when StopTransactionOnEVSideDisconnect is false.

NOTE
Setting StopTransactionOnEVSideDisconnect to true will prevent sabotage acts top stop
the energy flow by unplugging not locked cables on EV side.

It is likely that The Central System applies sanity checks to the data contained in a StopTransaction.req
it received. The outcome of such sanity checks SHOULD NOT ever cause the Central System to not
respond with a StopTransaction.conf. Failing to respond with a StopTransaction.conf will only cause
the Charge Point to try the same message again as specified in Error responses to transaction-related
messages.

If Charge Point has implemented an Authorization Cache, then upon receipt of a StopTransaction.conf
PDU the Charge Point SHALL update the cache entry, if the idTag is not in the Local Authorization List,
with the IdTagInfo value from the response as described under Authorization Cache.

47

5. Operations Initiated by Central System

5.1. Cancel Reservation

Figure 22. Sequence Diagram: Cancel Reservation

To cancel a reservation the Central System SHALL send an CancelReservation.req PDU to the Charge
Point.

If the Charge Point has a reservation matching the reservationId in the request PDU, it SHALL return
status ‘Accepted’. Otherwise it SHALL return ‘Rejected’.

5.2. Change Availability

Figure 23. Sequence Diagram: Change Availability

Central System can request a Charge Point to change its availability. A Charge Point is considered
available (“operative”) when it is charging or ready for charging. A Charge Point is considered
unavailable when it does not allow any charging. The Central System SHALL send a
ChangeAvailability.req PDU for requesting a Charge Point to change its availability. The Central System
can change the availability to available or unavailable.

Upon receipt of a ChangeAvailability.req PDU, the Charge Point SHALL respond with a
ChangeAvailability.conf PDU. The response PDU SHALL indicate whether the Charge Point is able to
change to the requested availability or not. When a transaction is in progress Charge Point SHALL
respond with availability status 'Scheduled' to indicate that it is scheduled to occur after the
transaction has finished.

In the event that Central System requests Charge Point to change to a status it is already in, Charge
Point SHALL respond with availability status ‘Accepted’.

When an availability change requested with a ChangeAvailability.req PDU has happened, the Charge
Point SHALL inform Central System of its new availability status with a StatusNotification.req as
described there.

48

NOTE
In the case the ChangeAvailability.req contains ConnectorId = 0, the status change
applies to the Charge Point and all Connectors.

NOTE Persistent states: for example: Connector set to Unavailable shall persist a reboot.

5.3. Change Configuration

Figure 24. Sequence Diagram: Change Configuration

Central System can request a Charge Point to change configuration parameters. To achieve this, Central
System SHALL send a ChangeConfiguration.req. This request contains a key-value pair, where "key" is
the name of the configuration setting to change and "value" contains the new setting for the
configuration setting.

Upon receipt of a ChangeConfiguration.req Charge Point SHALL reply with a ChangeConfiguration.conf
indicating whether it was able to executed the change. Content of "key" and "value" is not prescribed. If
"key" does not correspond to a configuration setting supported by Charge Point, it SHALL reply with a
status NotSupported. If the change was executed successfully, the Charge Point SHALL respond with a
status Accepted. If the change was executed successfully, but a reboot is needed to apply it, the Charge
Point SHALL respond with status RebootRequired. In case of failure to set the configuration, the Charge
Point SHALL respond with status Rejected.

If a key value is defined as a CSL, it MAY be accompanied with a [KeyName]MaxLength key, indicating the
max length of the CSL in items. If this key is not set, a safe value of 1 (one) item SHOULD be assumed.

5.4. Clear Cache

Figure 25. Sequence Diagram: Clear Cache

Central System can request a Charge Point to clear its Authorization Cache. The Central System SHALL
send a ClearCache.req PDU for clearing the Charge Point’s Authorization Cache.

Upon receipt of a ClearCache.req PDU, the Charge Point SHALL respond with a ClearCache.conf PDU.
The response PDU SHALL indicate whether the Charge Point was able to clear its Authorization Cache.

49

5.5. Clear Charging Profile

Figure 26. Sequence Diagram: Clear Charging Profile

If the Central System wishes to clear some or all of the charging profiles that were previously sent the
Charge Point, it SHALL use the ClearChargingProfile.req PDU.

The Charge Point SHALL respond with a ClearChargingProfile.conf PDU specifying whether it was able
to process the request.

5.6. Data Transfer

Figure 27. Sequence Diagram: Data Transfer

If the Central System needs to send information to a Charge Point for a function not supported by
OCPP, it SHALL use the DataTransfer.req PDU.

Behaviour of this operation is identical to the Data Transfer operation initiated by the Charge Point.
See Data Transfer for details.

5.7. Get Composite Schedule

Figure 28. Sequence Diagram: Get Composite Schedule

The Central System MAY request the Charge Point to report the Composite Charging Schedule by
sending a GetCompositeSchedule.req PDU. The reported schedule, in the GetCompositeSchedule.conf
PDU, is the result of the calculation of all active schedules and possible local limits present in the
Charge Point. Also IEC 15118 limits might be taken into account.

50

Upon receipt of a GetCompositeSchedule.req, the Charge Point SHALL calculate the scheduled time
intervals up to the Duration is met and send them to the central system.

If the ConnectorId in the request is set to '0', the Charge Point SHALL report the total expected energy
flow of the Charge Point for the requested time period.

NOTE

Please note that the charging schedule sent by the charge point is only indicative for
that point in time. this schedule might change over time due to external causes (for
instance, local balancing based on grid connection capacity is active and one Connector
becomes available).

If the Charge Point is not able to report the requested schedule, for instance if the connectorId is
unknown, it SHALL respond with a status Rejected.

5.8. Get Configuration

Figure 29. Sequence Diagram: Get Configuration

To retrieve the value of configuration settings, the Central System SHALL send a GetConfiguration.req
PDU to the Charge Point.

If the list of keys in the request PDU is empty or missing (it is optional), the Charge Point SHALL return
a list of all configuration settings in GetConfiguration.conf. Otherwise Charge Point SHALL return a list
of recognized keys and their corresponding values and read-only state. Unrecognized keys SHALL be
placed in the response PDU as part of the optional unknown key list element of GetConfiguration.conf.

The number of configuration keys requested in a single PDU MAY be limited by the Charge Point. This
maximum can be retrieved by reading the configuration key GetConfigurationMaxKeys.

5.9. Get Diagnostics

Figure 30. Sequence Diagram: Get Diagnostics

Central System can request a Charge Point for diagnostic information. The Central System SHALL send

51

a GetDiagnostics.req PDU for getting diagnostic information of a Charge Point with a location where
the Charge Point MUST upload its diagnostic data to and optionally a begin and end time for the
requested diagnostic information.

Upon receipt of a GetDiagnostics.req PDU, and if diagnostics information is available then Charge Point
SHALL respond with a GetDiagnostics.conf PDU stating the name of the file containing the diagnostic
information that will be uploaded. Charge Point SHALL upload a single file. Format of the diagnostics
file is not prescribed. If no diagnostics file is available, then GetDiagnostics.conf SHALL NOT contain a
file name.

5.10. Get Local List Version

Figure 31. Sequence Diagram: Get Local List Version

In order to support synchronisation of the Local Authorization List, Central System can request a
Charge Point for the version number of the Local Authorization List. The Central System SHALL send a
GetLocalListVersion.req PDU to request this value.

Upon receipt of a GetLocalListVersion.req PDU Charge Point SHALL respond with a
GetLocalListVersion.conf PDU containing the version number of its Local Authorization List. A version
number of 0 (zero) SHALL be used to indicate that the local authorization list is empty, and a version
number of -1 SHALL be used to indicate that the Charge Point does not support Local Authorization
Lists.

5.11. Remote Start Transaction

Figure 32. Sequence Diagram: Remote Start Transaction

Central System can request a Charge Point to start a transaction by sending a
RemoteStartTransaction.req. Upon receipt, the Charge Point SHALL reply with
RemoteStartTransaction.conf and a status indicating whether it is able to start a transaction or not.

The effect of the RemoteStartTransaction.req message depends on the value of the

52

AuthorizeRemoteTxRequests configuration key in the Charge Point.

• If the value of AuthorizeRemoteTxRequests is true, the Charge Point SHALL behave as if in response
to a local action at the Charge Point to start a transaction with the idTag given in the
RemoteStartTransaction.req message. This means that the Charge Point will first try to authorize
the idTag, using the Local Authorization List, Authorization Cache and/or an Authorize.req request.
A transaction will only be started after authorization was obtained.

• If the value of AuthorizeRemoteTxRequests is false, the Charge Point SHALL immediately try to start a
transaction for the idTag given in the RemoteStartTransaction.req message. Note that after the
transaction has been started, the Charge Point will send a StartTransaction request to the Central
System, and the Central System will check the authorization status of the idTag when processing
this StartTransaction request.

The following typical use cases are the reason for Remote Start Transaction:

• Enable a CPO operator to help an EV driver that has problems starting a transaction.

• Enable mobile apps to control charging transactions via the Central System.

• Enable the use of SMS to control charging transactions via the Central System.

The RemoteStartTransaction.req SHALL contain an identifier (idTag), which Charge Point SHALL use, if
it is able to start a transaction, to send a StartTransaction.req to Central System. The transaction is
started in the same way as described in StartTransaction. The RemoteStartTransaction.req MAY
contain a connector id if the transaction is to be started on a specific connector. When no connector id
is provided, the Charge Point is in control of the connector selection. A Charge Point MAY reject a
RemoteStartTransaction.req without a connector id.

The Central System MAY include a ChargingProfile in the RemoteStartTransaction request. The purpose
of this ChargingProfile SHALL be set to TxProfile. If accepted, the Charge Point SHALL use this
ChargingProfile for the transaction.

NOTE

If a Charge Point without support for Smart Charging receives a
RemoteStartTransaction.req with a Charging Profile, this parameter SHOULD be
ignored.

5.12. Remote Stop Transaction

Figure 33. Sequence Diagram: Remote Stop Transaction

Central System can request a Charge Point to stop a transaction by sending a

53

RemoteStopTransaction.req to Charge Point with the identifier of the transaction. Charge Point SHALL
reply with RemoteStopTransaction.conf to indicate whether it is indeed able to stop the transaction.

This remote request to stop a transaction is equal to a local action to stop a transaction. Therefore, the
transaction SHALL be stopped, The Charge Point SHALL send a StopTransaction.req and, if applicable,
unlock the connector.

The following two main use cases are the reason for Remote Stop Transaction:

• Enable a CPO operator to help an EV driver that has problems stopping a transaction.

• Enable mobile apps to control charging transactions via the Central System.

5.13. Reserve Now

Figure 34. Sequence Diagram: Reserve Now

A Central System can issue a ReserveNow.req to a Charge Point to reserve a connector for use by a
specific idTag.

To request a reservation the Central System SHALL send a ReserveNow.req PDU to a Charge Point. The
Central System MAY specify a connector to be reserved. Upon receipt of a ReserveNow.req PDU, the
Charge Point SHALL respond with a ReserveNow.conf PDU.

If the reservationId in the request matches a reservation in the Charge Point, then the Charge Point
SHALL replace that reservation with the new reservation in the request.

If the reservationId does not match any reservation in the Charge Point, then the Charge Point SHALL
return the status value ‘Accepted’ if it succeeds in reserving a connector. The Charge Point SHALL
return ‘Occupied’ if the Charge Point or the specified connector are occupied. The Charge Point SHALL
also return ‘Occupied’ when the Charge Point or connector has been reserved for the same or another
idTag. The Charge Point SHALL return ‘Faulted’ if the Charge Point or the connector are in the Faulted
state. The Charge Point SHALL return ‘Unavailable’ if the Charge Point or connector are in the
Unavailable state. The Charge Point SHALL return ‘Rejected’ if it is configured not to accept
reservations.

If the Charge Point accepts the reservation request, then it SHALL refuse charging for all incoming
idTags on the reserved connector, except when the incoming idTag or the parent idTag match the idTag
or parent idTag of the reservation.

54

When the configuration key: ReserveConnectorZeroSupported is set to true the Charge Point supports
reservations on connector 0. If the connectorId in the reservation request is 0, then the Charge Point
SHALL NOT reserve a specific connector, but SHALL make sure that at any time during the validity of
the reservation, one connector remains available for the reserved idTag. If the configuration key:
ReserveConnectorZeroSupported is not set or set to false, the Charge Point SHALL return ‘Rejected’

If the parent idTag in the reservation has a value (it is optional), then in order to determine the parent
idTag that is associated with an incoming idTag, the Charge Point MAY look it up in its Local
Authorization List or Authorization Cache. If it is not found in the Local Authorization List or
Authorization Cache, then the Charge Point SHALL send an Authorize.req for the incoming idTag to the
Central System. The Authorize.conf response contains the parent-id.

A reservation SHALL be terminated on the Charge Point when either (1) a transaction is started for the
reserved idTag or parent idTag and on the reserved connector or any connector when the reserved
connectorId is 0, or (2) when the time specified in expiryDate is reached, or (3) when the Charge Point
or connector are set to Faulted or Unavailable.

If a transaction for the reserved idTag is started, then Charge Point SHALL send the reservationId in
the StartTransaction.req PDU (see Start Transaction) to notify the Central System that the reservation is
terminated.

When a reservation expires, the Charge Point SHALL terminate the reservation and make the
connector available. The Charge Point SHALL send a status notification to notify the Central System
that the reserved connector is now available.

If Charge Point has implemented an Authorization Cache, then upon receipt of a ReserveNow.conf PDU
the Charge Point SHALL update the cache entry, if the idTag is not in the Local Authorization List, with
the IdTagInfo value from the response as described under Authorization Cache.

NOTE
It is RECOMMENDED to validate the Identifier with an authorize.req after reception of
a ReserveNow.req and before the start of the transaction.

5.14. Reset

Figure 35. Sequence Diagram: Reset

The Central System SHALL send a Reset.req PDU for requesting a Charge Point to reset itself. The

55

Central System can request a hard or a soft reset. Upon receipt of a Reset.req PDU, the Charge Point
SHALL respond with a Reset.conf PDU. The response PDU SHALL include whether the Charge Point is
will attempt to reset itself.

At receipt of a soft reset, the Charge Point SHALL return to a state that behaves as just having been
booted. If any transaction is in progress it SHALL be terminated normally, before the reset, as in Stop
Transaction.

At receipt of a hard reset the Charge Point SHALL attempt to terminate any transaction in progress
normally as in StopTransaction and then perform a reboot.

NOTE Persistent states: for example: Connector set to Unavailable shall persist.

5.15. Send Local List

Figure 36. Sequence Diagram: Send Local List

Central System can send a Local Authorization List that a Charge Point can use for authorization of
idTags. The list MAY be either a full list to replace the current list in the Charge Point or it MAY be a
differential list with updates to be applied to the current list in the Charge Point.

The Central System SHALL send a SendLocalList.req PDU to send the list to a Charge Point. The
SendLocalList.req PDU SHALL contain the type of update (full or differential) and the version number
that the Charge Point MUST associate with the local authorization list after it has been updated.

Upon receipt of a SendLocalList.req PDU, the Charge Point SHALL respond with a SendLocalList.conf
PDU. The response PDU SHALL indicate whether the Charge Point has accepted the update of the local
authorization list. If the status is Failed or VersionMismatch and the updateType was Differential, then
Central System SHOULD retry sending the full local authorization list with updateType Full.

5.16. Set Charging Profile

56

Figure 37. Sequence Diagram: Set Charging Profile

A Central System can send a SetChargingProfile.req to a Charge Point, to set a charging profile, in the
following situations:

• At the start of a transaction to set the charging profile for the transaction;

• In a RemoteStartTransaction request sent to a Charge Point

• During a transaction to change the active profile for the transaction;

• Outside the context of a transaction as a separate message to set a charging profile to a local
controller, Charge Point, or a default charging profile to a connector.

IMPORTANT

To prevent mismatch between transactions and a TxProfile, The Central System
SHALL include the transactionId in a SetChargingProfile.req if the profile applies
to a specific transaction.

These situations are described below.

5.16.1. Setting a charging profile at start of transaction

If the Central System receives a StartTransaction.req the Central System SHALL respond with a
StartTransaction.conf. If there is a need for a charging profile, The Central System MAY choose to send
a SetChargingProfile.req to the Charge Point.

It is RECOMMENDED to check the timestamp in the StartTransaction.req PDU prior to sending a
charging profile to check if the transaction is likely to be still ongoing. The StartTransaction.req might
have been cached during an offline period.

5.16.2. Setting a charge profile in a RemoteStartTransaction request

The Central System MAY include a charging profile in a RemoteStartTransaction request.

57

If the Central System includes a ChargingProfile, the ChargingProfilePurpose MUST be set to TxProfile.

NOTE
The Charge Point SHOULD add the TransactionId to the received profile once the
transaction is reported to the central system.

5.16.3. Setting a charging profile during a transaction.

The Central System MAY send a charging profile to a Charge Point to update the charging profile for
that transaction. The Central System SHALL use the SetChargingProfile.req PDU for that purpose. If a
charging profile with the same chargingProfileId, or the same combination of stackLevel /
ChargingProfilePurpose, exists on the Charge Point, the new charging profile SHALL replace the
existing charging profile, otherwise it SHALL be added. The Charge Point SHALL then re-evaluate its
collection of charge profiles to determine which charging profile will become active. In order to ensure
that the updated charging profile applies only to the current transaction, the chargingProfilePurpose of
the ChargingProfile MUST be set to TxProfile. (See section: Charging Profile Purposes)

5.16.4. Setting a charging profile outside of a transaction

The Central System MAY send charging profiles to a Charge Point that are to be used as default
charging profiles. The Central System SHALL use the SetChargingProfile.req PDU for that purpose.
Such charging profiles MAY be sent at any time. If a charging profile with the same chargingProfileId,
or the same combination of stackLevel / ChargingProfilePurpose, exists on the Charge Point, the new
charging profile SHALL replace the existing charging profile, otherwise it SHALL be added. The
Charge Point SHALL then re-evaluate its collection of charge profiles to determine which charging
profile will become active.

NOTE
It is not possible to set a ChargingProfile with purpose set to TxProfile without presence
of an active transaction, or in advance of a transaction.

NOTE

When a ChargingProfile is refreshed during execution, it is advised to put the
startSchedule of the new ChargingProfile in the past, so there is no period of default
charging behaviour inbetween the ChargingProfiles. The Charge Point SHALL continue
to execute the existing ChargingProfile until the new ChargingProfile is installed.

NOTE

If the chargingSchedulePeriod is longer than duration, the remainder periods SHALL
not be executed. If duration is longer than the chargingSchedulePeriod, the Charge
Point SHALL keep the value of the last chargingSchedulePeriod until duration has
ended.

NOTE

When recurrencyKind is used in combination with a chargingSchedule duration
shorter than the recurrencyKind period, the Charge Point SHALL fall back to default
behaviour after the chargingSchedule duration ends.

58

5.17. Trigger Message

Figure 38. Sequence Diagram: Trigger Message

During normal operation, the Charge Point informs the Central System of its state and any relevant
occurrences. If there is nothing to report the Charge Point will send at least a heartBeat at a predefined
interval. Under normal circumstances this is just fine, but what if the Central System has (whatever)
reason to doubt the last known state? What can a Central System do if a firmware update is in progress
and the last status notification it received about it was much longer ago than could reasonably be
expected? The same can be asked for the progress of a diagnostics request. The problem in these
situations is not that the information needed isn’t covered by existing messages, the problem is strictly
a timing issue. The Charge Point has the information, but has no way of knowing that the Central
System would like an update.

The TriggerMessage.req makes it possible for the Central System, to request the Charge Point, to send
Charge Point-initiated messages. In the request the Central System indicates which message it wishes to
receive. For every such requested message the Central System MAY optionally indicate to which
connector this request applies. The requested message is leading: if the specified connectorId is not
relevant to the message, it should be ignored. In such cases the requested message should still be sent.

Inversely, if the connectorId is relevant but absent, this should be interpreted as “for all allowed
connectorId values”. For example, a request for a statusNotification for connectorId 0 is a request for
the status of the Charge Point. A request for a statusNotification without connectorId is a request for
multiple statusNotifications: the notification for the Charge Point itself and a notification for each of its
connectors.

Figure 39. Sequence Diagram: Trigger Message StatusNotification Example

The Charge Point SHALL first send the TriggerMessage response, before sending the requested
message. In the TriggerMessage.conf the Charge Point SHALL indicate whether it will send it or not, by
returning ACCEPTED or REJECTED. It is up to the Charge Point if it accepts or rejects the request to
send. If the requested message is unknown or not implemented the Charge Point SHALL return
NOT_IMPLEMENTED.

Messages that the Charge Point marks as accepted SHOULD be sent. The situation could occur that,

59

between accepting the request and actually sending the requested message, that same message gets
sent because of normal operations. In such cases the message just sent MAY be considered as
complying with the request.

The TriggerMessage mechanism is not intended to retrieve historic data. The messages it triggers
should only give current information. A MeterValues message triggered in this way for instance
SHOULD return the most recent measurements for all measurands configured in configuration key
MeterValuesSampledData. StartTransaction and StopTransaction have been left out of this mechanism
because they are not state related, but by their nature describe a transition.

5.18. Unlock Connector

Figure 40. Sequence Diagram: Unlock Connector

Central System can request a Charge Point to unlock a connector. To do so, the Charge Point SHALL
send an UnlockConnector.req PDU.

The purpose of this message: Help EV drivers that have problems unplugging their cable from the
Charge Point in case of malfunction of the Connector cable retention. When a EV driver calls the CPO
help-desk, an operator could manually trigger the sending of an UnlockConnector.req to the Charge
Point, forcing a new attempt to unlock the connector. Hopefully this time the connector unlocks and
the EV driver can unplug the cable and drive away.

The UnlockConnector.req SHOULD NOT be used to remotely stop a running transaction, use the
Remote Stop Transaction instead.

Upon receipt of an UnlockConnector.req PDU, the Charge Point SHALL respond with a
UnlockConnector.conf PDU. The response PDU SHALL indicate whether the Charge Point was able to
unlock its connector.

If there was a transaction in progress on the specific connector, then Charge Point SHALL finish the
transaction first as described in Stop Transaction.

IMPORTANT
UnlockConnector.req is intented only for unlocking the cable retention lock on
the Connector, not for unlocking a connector access door.

5.19. Update Firmware

60

Figure 41. Sequence Diagram: Update Firmware

Central System can notify a Charge Point that it needs to update its firmware. The Central System
SHALL send an UpdateFirmware.req PDU to instruct the Charge Point to install new firmware. The
PDU SHALL contain a date and time after which the Charge Point is allowed to retrieve the new
firmware and the location from which the firmware can be downloaded.

Upon receipt of an UpdateFirmware.req PDU, the Charge Point SHALL respond with a
UpdateFirmware.conf PDU. The Charge Point SHOULD start retrieving the firmware as soon as possible
after retrieve-date.

61

6. Messages

6.1. Authorize.req
This contains the field definition of the Authorize.req PDU sent by the Charge Point to the Central
System. See also Authorize

Field Name Field Type Card. Description

idTag IdToken 1..1 Required. This contains
the identifier that needs
to be authorized.

6.2. Authorize.conf
This contains the field definition of the Authorize.conf PDU sent by the Central System to the Charge
Point in response to a Authorize.req PDU. See also Authorize

Field Name Field Type Card. Description

idTagInfo IdTagInfo 1..1 Required. This contains
information about
authorization status,
expiry and parent id.

6.3. BootNotification.req
This contains the field definition of the BootNotification.req PDU sent by the Charge Point to the
Central System. See also Boot Notification

Field Name Field Type Card. Description

chargeBoxSerialNumb
er

CiString25Type 0..1 Optional. This contains a
value that identifies the
serial number of the
Charge Box inside the
Charge Point.
Deprecated, will be
removed in future
version

chargePointModel CiString20Type 1..1 Required. This contains
a value that identifies
the model of the
ChargePoint.

62

Field Name Field Type Card. Description

chargePointSerialNum
ber

CiString25Type 0..1 Optional. This contains a
value that identifies the
serial number of the
Charge Point.

chargePointVendor CiString20Type 1..1 Required. This contains
a value that identifies
the vendor of the
ChargePoint.

firmwareVersion CiString50Type 0..1 Optional. This contains
the firmware version of
the Charge Point.

iccid CiString20Type 0..1 Optional. This contains
the ICCID of the
modem’s SIM card.

imsi CiString20Type 0..1 Optional. This contains
the IMSI of the modem’s
SIM card.

meterSerialNumber CiString25Type 0..1 Optional. This contains
the serial number of the
main power meter of
the Charge Point.

meterType CiString25Type 0..1 Optional. This contains
the type of the main
power meter of the
Charge Point.

6.4. BootNotification.conf
This contains the field definition of the BootNotification.conf PDU sent by the Central System to the
Charge Point in response to a BootNotification.req PDU. See also Boot Notification

Field Name Field Type Card. Description

currentTime dateTime 1..1 Required. This contains
the Central System’s
current time.

63

Field Name Field Type Card. Description

interval integer 1..1 Required. When
RegistrationStatus is
Accepted, this contains
the heartbeat interval in
seconds. If the Central
System returns
something other than
Accepted, the value of
the interval field
indicates the minimum
wait time before
sending a next
BootNotification
request.

status RegistrationStatus 1..1 Required. This contains
whether the Charge
Point has been
registered within the
System Central.

6.5. CancelReservation.req
This contains the field definition of the CancelReservation.req PDU sent by the Central System to the
Charge Point. See also Cancel Reservation

Field Name Field Type Card. Description

reservationId integer 1..1 Required. Id of the
reservation to cancel.

6.6. CancelReservation.conf
This contains the field definition of the CancelReservation.conf PDU sent by the Charge Point to the
Central System in response to a CancelReservation.req PDU. See also Cancel Reservation

Field Name Field Type Card. Description

status CancelReservationStatus 1..1 Required. This indicates
the success or failure of
the cancelling of a
reservation by Central
System.

64

6.7. ChangeAvailability.req
This contains the field definition of the ChangeAvailability.req PDU sent by the Central System to the
Charge Point. See also Change Availability

Field Name Field Type Card. Description

connectorId integer connectorId >= 0 1..1 Required. The id of the
connector for which
availability needs to
change. Id '0' (zero) is
used if the availability of
the Charge Point and all
its connectors needs to
change.

type AvailabilityType 1..1 Required. This contains
the type of availability
change that the Charge
Point should perform.

6.8. ChangeAvailability.conf
This contains the field definition of the ChangeAvailability.conf PDU return by Charge Point to Central
System. See also Change Availability

Field Name Field Type Card. Description

status AvailabilityStatus 1..1 Required. This indicates
whether the Charge
Point is able to perform
the availability change.

6.9. ChangeConfiguration.req
This contains the field definition of the ChangeConfiguration.req PDU sent by Central System to Charge
Point. It is RECOMMENDED that the content and meaning of the 'key' and 'value' fields is agreed upon
between Charge Point and Central System. See also Change Configuration

65

Field Name Field Type Card. Description

key CiString50Type 1..1 Required. The name of
the configuration setting
to change. See for
standard configuration
key names and
associated values

value CiString500Type 1..1 Required. The new
value as string for the
setting. See for standard
configuration key names
and associated values

6.10. ChangeConfiguration.conf
This contains the field definition of the ChangeConfiguration.conf PDU returned from Charge Point to
Central System. See also Change Configuration

Field Name Field Type Card. Description

status ConfigurationStatus 1..1 Required. Returns
whether configuration
change has been
accepted.

6.11. ClearCache.req
This contains the field definition of the ClearCache.req PDU sent by the Central System to the Charge
Point. See also Clear Cache

No fields are defined.

6.12. ClearCache.conf
This contains the field definition of the ClearCache.conf PDU sent by the Charge Point to the Central
System in response to a ClearCache.req PDU. See also Clear Cache

Field Name Field Type Card. Description

status ClearCacheStatus 1..1 Required. Accepted if
the Charge Point has
executed the request,
otherwise rejected.

66

6.13. ClearChargingProfile.req
This contains the field definition of the ClearChargingProfile.req PDU sent by the Central System to the
Charge Point.

The Central System can use this message to clear (remove) either a specific charging profile (denoted
by id) or a selection of charging profiles that match with the values of the optional connectorId,
stackLevel and chargingProfilePurpose fields. See also Clear Charging Profile

Field Name Field Type Card. Description

id integer 0..1 Optional. The ID of the
charging profile to clear.

connectorId integer 0..1 Optional. Specifies the
ID of the connector for
which to clear charging
profiles. A connectorId
of zero (0) specifies the
charging profile for the
overall Charge Point.
Absence of this
parameter means the
clearing applies to all
charging profiles that
match the other criteria
in the request.

chargingProfilePurpos
e

ChargingProfilePurpose
Type

0..1 Optional. Specifies to
purpose of the charging
profiles that will be
cleared, if they meet the
other criteria in the
request.

stackLevel integer 0..1 Optional. specifies the
stackLevel for which
charging profiles will be
cleared, if they meet the
other criteria in the
request

6.14. ClearChargingProfile.conf
This contains the field definition of the ClearChargingProfile.conf PDU sent by the Charge Point to the
Central System in response to a ClearChargingProfile.req PDU. See also Clear Charging Profile

67

Field Name Field Type Card. Description

status ClearChargingProfileSta
tus

1..1 Required. Indicates if
the Charge Point was
able to execute the
request.

6.15. DataTransfer.req
This contains the field definition of the DataTransfer.req PDU sent either by the Central System to the
Charge Point or vice versa. See also Data Transfer

Field Name Field Type Card. Description

vendorId CiString255Type 1..1 Required. This identifies
the Vendor specific
implementation

messageId CiString50Type 0..1 Optional. Additional
identification field

data Text Length undefined 0..1 Optional. Data without
specified length or
format.

6.16. DataTransfer.conf
This contains the field definition of the DataTransfer.conf PDU sent by the Charge Point to the Central
System or vice versa in response to a DataTransfer.req PDU. See also Data Transfer

Field Name Field Type Card. Description

status DataTransferStatus 1..1 Required. This indicates
the success or failure of
the data transfer.

data Text Length undefined 0..1 Optional. Data in
response to request.

6.17. DiagnosticsStatusNotification.req
This contains the field definition of the DiagnosticsStatusNotification.req PDU sent by the Charge Point
to the Central System. See also Diagnostics Status Notification

68

Field Name Field Type Card. Description

status DiagnosticsStatus 1..1 Required. This contains
the status of the
diagnostics upload.

6.18. DiagnosticsStatusNotification.conf
This contains the field definition of the DiagnosticsStatusNotification.conf PDU sent by the Central
System to the Charge Point in response to a DiagnosticsStatusNotification.req PDU. See also Diagnostics
Status Notification

No fields are defined.

6.19. FirmwareStatusNotification.req
This contains the field definition of the FirmwareStatusNotifitacion.req PDU sent by the Charge Point
to the Central System. See also Firmware Status Notification

Field Name Field Type Card. Description

status FirmwareStatus 1..1 Required. This contains
the progress status of
the firmware
installation.

6.20. FirmwareStatusNotification.conf
This contains the field definition of the FirmwareStatusNotification.conf PDU sent by the Central
System to the Charge Point in response to a FirmwareStatusNotification.req PDU. See also Firmware
Status Notification

No fields are defined.

6.21. GetCompositeSchedule.req
This contains the field definition of the GetCompositeSchedule.req PDU sent by the Central System to
the Charge Point. See also Get Composite Schedule

69

Field Name Field Type Card. Description

connectorId integer 1..1 Required. The ID of the
Connector for which
the schedule is
requested. When
ConnectorId=0, the
Charge Point will
calculate the expected
consumption for the
grid connection.

duration integer 1..1 Required. Time in
seconds. length of
requested schedule

chargingRateUnit ChargingRateUnitType 0..1 Optional. Can be used to
force a power or current
profile

6.22. GetCompositeSchedule.conf
This contains the field definition of the GetCompositeSchedule.conf PDU sent by the Charge Point to the
Central System in response to a GetCompositeSchedule.req PDU. See also Get Composite Schedule

Field Name Field Type Card. Description

status GetCompositeScheduleSt
atus

1..1 Required. Status of the
request. The Charge
Point will indicate if it
was able to process the
request

connectorId integer 0..1 Optional. The charging
schedule contained in
this notification applies
to a Connector.

scheduleStart DateTime 0..1 Optional. Time. Periods
contained in the
charging profile are
relative to this point in
time.

chargingSchedule ChargingSchedule 0..1 Optional. Planned
Composite Charging
Schedule, the energy
consumption over time.
Always relative to
ScheduleStart.

70

6.23. GetConfiguration.req
This contains the field definition of the GetConfiguration.req PDU sent by the the Central System to the
Charge Point. See also Get Configuration

Field Name Field Type Card. Description

key CiString50Type 0..* Optional. List of keys for
which the configuration
value is requested.

6.24. GetConfiguration.conf
This contains the field definition of the GetConfiguration.conf PDU sent by Charge Point the to the
Central System in response to a GetConfiguration.req. See also Get Configuration

Field Name Field Type Card. Description

configurationKey KeyValue 0..* Optional. List of
requested or known
keys

unknownKey CiString50Type 0..* Optional. Requested
keys that are unknown

6.25. GetDiagnostics.req
This contains the field definition of the GetDiagnostics.req PDU sent by the Central System to the
Charge Point. See also Get Diagnostics

Field Name Field Type Card. Description

location anyURI 1..1 Required. This contains
the location (directory)
where the diagnostics
file shall be uploaded to.

retries integer 0..1 Optional. This specifies
how many times Charge
Point must try to upload
the diagnostics before
giving up. If this field is
not present, it is left to
Charge Point to decide
how many times it
wants to retry.

71

Field Name Field Type Card. Description

retryInterval integer 0..1 Optional. The interval in
seconds after which a
retry may be attempted.
If this field is not
present, it is left to
Charge Point to decide
how long to wait
between attempts.

startTime dateTime 0..1 Optional. This contains
the date and time of the
oldest logging
information to include
in the diagnostics.

stopTime dateTime 0..1 Optional. This contains
the date and time of the
latest logging
information to include
in the diagnostics.

6.26. GetDiagnostics.conf
This contains the field definition of the GetDiagnostics.conf PDU sent by the Charge Point to the Central
System in response to a GetDiagnostics.req PDU. See also Get Diagnostics

Field Name Field Type Card. Description

fileName CiString255Type 0..1 Optional. This contains
the name of the file with
diagnostic information
that will be uploaded.
This field is not present
when no diagnostic
information is available.

6.27. GetLocalListVersion.req
This contains the field definition of the GetLocalListVersion.req PDU sent by the Central System to the
Charge Point. See also Get Local List Version

No fields are defined.

72

6.28. GetLocalListVersion.conf
This contains the field definition of the GetLocalListVersion.conf PDU sent by the Charge Point to
Central System in response to a GetLocalListVersion.req PDU. See also Get Local List Version

Field Name Field Type Card. Description

listVersion integer 1..1 Required. This contains
the current version
number of the local
authorization list in the
Charge Point.

6.29. Heartbeat.req
This contains the field definition of the Heartbeat.req PDU sent by the Charge Point to the Central
System. See also Heartbeat

No fields are defined.

6.30. Heartbeat.conf
This contains the field definition of the Heartbeat.conf PDU sent by the Central System to the Charge
Point in response to a Heartbeat.req PDU. See also Heartbeat

Field Name Field Type Card. Description

currentTime dateTime 1..1 Required. This contains
the current time of the
Central System.

6.31. MeterValues.req
This contains the field definition of the MeterValues.req PDU sent by the Charge Point to the Central
System. See also Meter Values

Field Name Field Type Card. Description

connectorId integer connectorId >= 0 1..1 Required. This contains
a number (>0)
designating a connector
of the Charge Point.‘0’
(zero) is used to
designate the main
powermeter.

73

Field Name Field Type Card. Description

transactionId integer 0..1 Optional. The
transaction to which
these meter samples are
related.

meterValue MeterValue 1..* Required. The sampled
meter values with
timestamps.

6.32. MeterValues.conf
This contains the field definition of the MeterValues.conf PDU sent by the Central System to the Charge
Point in response to a MeterValues.req PDU. See also Meter Values

No fields are defined.

6.33. RemoteStartTransaction.req
This contains the field definitions of the RemoteStartTransaction.req PDU sent to Charge Point by
Central System. See also Remote Start Transaction

Field Name Field Type Card. Description

connectorId integer 0..1 Optional. Number of the
connector on which to
start the transaction.
connectorId SHALL be >
0

idTag IdToken 1..1 Required. The identifier
that Charge Point must
use to start a
transaction.

chargingProfile ChargingProfile 0..1 Optional. Charging
Profile to be used by the
Charge Point for the
requested transaction.
ChargingProfilePurpose
MUST be set to TxProfile

6.34. RemoteStartTransaction.conf
This contains the field definitions of the RemoteStartTransaction.conf PDU sent from Charge Point to
Central System. See also Remote Start Transaction

74

Field Name Field Type Card. Description

status RemoteStartStopStatus 1..1 Required. Status
indicating whether
Charge Point accepts the
request to start a
transaction.

6.35. RemoteStopTransaction.req
This contains the field definitions of the RemoteStopTransaction.req PDU sent to Charge Point by
Central System. See also Remote Stop Transaction

Field Name Field Type Card. Description

transactionId integer 1..1 Required. The identifier
of the transaction which
Charge Point is
requested to stop.

6.36. RemoteStopTransaction.conf
This contains the field definitions of the RemoteStopTransaction.conf PDU sent from Charge Point to
Central System. See also Remote Stop Transaction

Field Name Field Type Card. Description

status RemoteStartStopStatus 1..1 Required. Status
indicating whether
Charge Point accepts the
request to stop a
transaction.

6.37. ReserveNow.req
This contains the field definition of the ReserveNow.req PDU sent by the Central System to the Charge
Point. See also Reserve Now

Field Name Field Type Card. Description

connectorId integer connectorId >= 0 1..1 Required. This contains
the id of the connector
to be reserved. A value
of 0 means that the
reservation is not for a
specific connector.

75

Field Name Field Type Card. Description

expiryDate dateTime 1..1 Required. This contains
the date and time when
the reservation ends.

idTag IdToken 1..1 Required. The identifier
for which the Charge
Point has to reserve a
connector.

parentIdTag IdToken 0..1 Optional. The parent
idTag.

reservationId integer 1..1 Required. Unique id for
this reservation.

6.38. ReserveNow.conf
This contains the field definition of the ReserveNow.conf PDU sent by the Charge Point to the Central
System in response to a ReserveNow.req PDU. See also Reserve Now

Field Name Field Type Card. Description

status ReservationStatus 1..1 Required. This indicates
the success or failure of
the reservation.

6.39. Reset.req
This contains the field definition of the Reset.req PDU sent by the Central System to the Charge Point.
See also Reset

Field Name Field Type Card. Description

type ResetType 1..1 Required. This contains
the type of reset that the
Charge Point should
perform.

6.40. Reset.conf
This contains the field definition of the Reset.conf PDU sent by the Charge Point to the Central System
in response to a Reset.req PDU. See also Reset

76

Field Name Field Type Card. Description

status ResetStatus 1..1 Required. This indicates
whether the Charge
Point is able to perform
the reset.

6.41. SendLocalList.req
This contains the field definition of the SendLocalList.req PDU sent by the Central System to the Charge
Point.

If no (empty) localAuthorizationList is given and the updateType is Full, all identifications are removed
from the list. Requesting a Differential update without (empty) localAuthorizationList will have no
effect on the list. All idTags in the localAuthorizationList MUST be unique, no duplicate values are
allowed. See also Send Local List

Field Name Field Type Card. Description

listVersion integer 1..1 Required. In case of a
full update this is the
version number of the
full list. In case of a
differential update it is
the version number of
the list after the update
has been applied.

localAuthorizationList AuthorizationData 0..* Optional. In case of a
full update this contains
the list of values that
form the new local
authorization list. In
case of a differential
update it contains the
changes to be applied to
the local authorization
list in the Charge Point.
Maximum number of
AuthorizationData
elements is available in
the configuration key:
SendLocalListMaxLength

updateType UpdateType 1..1 Required. This contains
the type of update (full
or differential) of this
request.

77

6.42. SendLocalList.conf
This contains the field definition of the SendLocalList.conf PDU sent by the Charge Point to the Central
System in response to a SendLocalList.req PDU. See also Send Local List

Field Name Field Type Card. Description

status UpdateStatus 1..1 Required. This indicates
whether the Charge
Point has successfully
received and applied the
update of the local
authorization list.

6.43. SetChargingProfile.req
This contains the field definition of the SetChargingProfile.req PDU sent by the Central System to the
Charge Point.

The Central System uses this message to send charging profiles to a Charge Point. See also Set Charging
Profile

Field Name Field Type Card. Description

connectorId integer 1..1 Required. The connector
to which the charging
profile applies. If
connectorId = 0, the
message contains an
overall limit for the
Charge Point.

csChargingProfiles ChargingProfile 1..1 Required. The charging
profile to be set at the
Charge Point.

6.44. SetChargingProfile.conf
This contains the field definition of the SetChargingProfile.conf PDU sent by the Charge Point to the
Central System in response to a SetChargingProfile.req PDU. See also Set Charging Profile

78

Field Name Field Type Card. Description

status ChargingProfileStatus 1..1 Required. Returns
whether the Charge
Point has been able to
process the message
successfully. This does
not guarantee the
schedule will be
followed to the letter.
There might be other
constraints the Charge
Point may need to take
into account.

6.45. StartTransaction.req
This section contains the field definition of the StartTransaction.req PDU sent by the Charge Point to
the Central System. See also Start Transaction

Field Name Field Type Card. Description

connectorId integer connectorId > 0 1..1 Required. This identifies
which connector of the
Charge Point is used.

idTag IdToken 1..1 Required. This contains
the identifier for which
a transaction has to be
started.

meterStart integer 1..1 Required. This contains
the meter value in Wh
for the connector at
start of the transaction.

reservationId integer 0..1 Optional. This contains
the id of the reservation
that terminates as a
result of this
transaction.

timestamp dateTime 1..1 Required. This contains
the date and time on
which the transaction is
started.

79

6.46. StartTransaction.conf
This contains the field definition of the StartTransaction.conf PDU sent by the Central System to the
Charge Point in response to a StartTransaction.req PDU. See also Start Transaction

Field Name Field Type Card. Description

idTagInfo IdTagInfo 1..1 Required. This contains
information about
authorization status,
expiry and parent id.

transactionId integer 1..1 Required. This contains
the transaction id
supplied by the Central
System.

6.47. StatusNotification.req
This contains the field definition of the StatusNotification.req PDU sent by the Charge Point to the
Central System. See also Status Notification

Field Name Field Type Card. Description

connectorId integer connectorId >= 0 1..1 Required. The id of the
connector for which the
status is reported. Id '0'
(zero) is used if the
status is for the Charge
Point main controller.

errorCode ChargePointErrorCode 1..1 Required. This contains
the error code reported
by the Charge Point.

info CiString50Type 0..1 Optional. Additional free
format information
related to the error.

status ChargePointStatus 1..1 Required. This contains
the current status of the
Charge Point.

timestamp dateTime 0..1 Optional. The time for
which the status is
reported. If absent time
of receipt of the message
will be assumed.

80

Field Name Field Type Card. Description

vendorId CiString255Type 0..1 Optional. This identifies
the vendor-specific
implementation.

vendorErrorCode CiString50Type 0..1 Optional. This contains
the vendor-specific
error code.

6.48. StatusNotification.conf
This contains the field definition of the StatusNotification.conf PDU sent by the Central System to the
Charge Point in response to an StatusNotification.req PDU. See also Status Notification

No fields are defined.

6.49. StopTransaction.req
This contains the field definition of the StopTransaction.req PDU sent by the Charge Point to the
Central System. See also Stop Transaction

Field Name Field Type Card. Description

idTag IdToken 0..1 Optional. This contains
the identifier which
requested to stop the
charging. It is optional
because a Charge Point
may terminate charging
without the presence of
an idTag, e.g. in case of a
reset. A Charge Point
SHALL send the idTag if
known.

meterStop integer 1..1 Required. This contains
the meter value in Wh
for the connector at end
of the transaction.

timestamp dateTime 1..1 Required. This contains
the date and time on
which the transaction is
stopped.

81

Field Name Field Type Card. Description

transactionId integer 1..1 Required. This contains
the transaction-id as
received by the
StartTransaction.conf.

reason Reason 0..1 Optional. This contains
the reason why the
transaction was
stopped. MAY only be
omitted when the
Reason is "Local".

transactionData MeterValue 0..* Optional. This contains
transaction usage details
relevant for billing
purposes.

6.50. StopTransaction.conf
This contains the field definition of the StopTransaction.conf PDU sent by the Central System to the
Charge Point in response to a StopTransaction.req PDU. See also Stop Transaction

Field Name Field Type Card. Description

idTagInfo IdTagInfo 0..1 Optional. This contains
information about
authorization status,
expiry and parent id. It
is optional, because a
transaction may have
been stopped without an
identifier.

6.51. TriggerMessage.req
This contains the field definition of the TriggerMessage.req PDU sent by the Central System to the
Charge Point. See also Trigger Message

Field Name Field Type Card. Description

requestedMessage MessageTrigger 1..1 Required.

connectorId integer connectorId > 0 0..1 Optional. Only filled in
when request applies to
a specific connector.

82

6.52. TriggerMessage.conf
This contains the field definition of the TriggerMessage.conf PDU sent by the Charge Point to the
Central System in response to a TriggerMessage.req PDU. See also Trigger Message

Field Name Field Type Card. Description

status TriggerMessageStatus 1..1 Required. Indicates
whether the Charge
Point will send the
requested notification
or not.

6.53. UnlockConnector.req
This contains the field definition of the UnlockConnector.req PDU sent by the Central System to the
Charge Point. See also Unlock Connector

Field Name Field Type Card. Description

connectorId integer connectorId > 0 1..1 Required. This contains
the identifier of the
connector to be
unlocked.

6.54. UnlockConnector.conf
This contains the field definition of the UnlockConnector.conf PDU sent by the Charge Point to the
Central System in response to an UnlockConnector.req PDU. See also Unlock Connector

Field Name Field Type Card. Description

status UnlockStatus 1..1 Required. This indicates
whether the Charge
Point has unlocked the
connector.

6.55. UpdateFirmware.req
This contains the field definition of the UpdateFirmware.req PDU sent by the Central System to the
Charge Point. See also Update Firmware

83

Field Name Field Type Card. Description

location anyURI 1..1 Required. This contains
a string containing a URI
pointing to a location
from which to retrieve
the firmware.

retries integer 0..1 Optional. This specifies
how many times Charge
Point must try to
download the firmware
before giving up. If this
field is not present, it is
left to Charge Point to
decide how many times
it wants to retry.

retrieveDate dateTime 1..1 Required. This contains
the date and time after
which the Charge Point
must retrieve the (new)
firmware.

retryInterval integer 0..1 Optional. The interval in
seconds after which a
retry may be attempted.
If this field is not
present, it is left to
Charge Point to decide
how long to wait
between attempts.

6.56. UpdateFirmware.conf
This contains the field definition of the UpdateFirmware.conf PDU sent by the Charge Point to the
Central System in response to a UpdateFirmware.req PDU. See also Update Firmware

No fields are defined.

84

7. Types

7.1. AuthorizationData
Class

Elements that constitute an entry of a Local Authorization List update.

Field Name Field Type Card. Description

idTag IdToken 1..1 Required. The identifier
to which this
authorization applies.

idTagInfo IdTagInfo 0..1 Optional. (Required
when UpdateType is
Full) This contains
information about
authorization status,
expiry and parent id.
For a Differential update
the following applies: If
this element is present,
then this entry SHALL
be added or updated in
the Local Authorization
List. If this element is
absent, than the entry
for this idtag in the
Local Authorization List
SHALL be deleted.

7.2. AuthorizationStatus
Enumeration

Status in a response to an Authorize.req.

Value Description

Accepted Identifier is allowed for charging.

Blocked Identifier has been blocked. Not allowed for
charging.

Expired Identifier has expired. Not allowed for charging.

Invalid Identifier is unknown. Not allowed for charging.

85

Value Description

ConcurrentTx Identifier is already involved in another
transaction and multiple transactions are not
allowed. (Only relevant for a
StartTransaction.req.)

7.3. AvailabilityStatus
Enumeration

Status returned in response to ChangeAvailability.req.

Value Description

Accepted Request has been accepted and will be executed.

Rejected Request has not been accepted and will not be
executed.

Scheduled Request has been accepted and will be executed
when transaction(s) in progress have finished.

7.4. AvailabilityType
Enumeration

Requested availability change in ChangeAvailability.req.

Value Description

Inoperative Charge point is not available for charging.

Operative Charge point is available for charging.

7.5. CancelReservationStatus
Enumeration

Status in CancelReservation.conf.

Value Description

Accepted Reservation for the identifier has been cancelled.

Rejected Reservation could not be cancelled, because there
is no reservation active for the identifier.

86

7.6. ChargePointErrorCode
Enumeration

Charge Point status reported in StatusNotification.req.

Value Description

ConnectorLockFailure Failure to lock or unlock connector.

EVCommunicationError Communication failure with the vehicle, might be
Mode 3 or other communication protocol
problem. This is not a real error in the sense that
the Charge Point doesn’t need to go to the faulted
state. Instead, it should go to the SuspendedEVSE
state.

GroundFailure Ground fault circuit interrupter has been
activated.

HighTemperature Temperature inside Charge Point is too high.

InternalError Error in internal hard- or software component.

LocalListConflict The authorization information received from the
Central System is in conflict with the
LocalAuthorizationList.

NoError No error to report.

OtherError Other type of error. More information in
vendorErrorCode.

OverCurrentFailure Over current protection device has tripped.

OverVoltage Voltage has risen above an acceptable level.

PowerMeterFailure Failure to read power meter.

PowerSwitchFailure Failure to control power switch.

ReaderFailure Failure with idTag reader.

ResetFailure Unable to perform a reset.

UnderVoltage Voltage has dropped below an acceptable level.

WeakSignal Wireless communication device reports a weak
signal.

7.7. ChargePointStatus
Enumeration

87

Status reported in StatusNotification.req. A status can be reported for the Charge Point main controller
(connectorId = 0) or for a specific connector. Status for the Charge Point main controller is a subset of
the enumeration: Available, Unavailable or Faulted.

States considered Operative are: Available, Preparing, Charging, SuspendedEVSE, SuspendedEV,
Finishing, Reserved. States considered Inoperative are: Unavailable, Faulted.

Status Condition

Available When a Connector becomes available for a new
user (Operative)

Preparing When a Connector becomes no longer available
for a new user but no charging session is active.
Typically a Connector is occupied when a user
presents a tag, inserts a cable or a vehicle
occupies the parking bay
(Operative)

Charging When the contactor of a Connector closes,
allowing the vehicle to charge
(Operative)

SuspendedEVSE When the contactor of a Connector opens upon
request of the EVSE, e.g. due to a smart charging
restriction or as the result of
StartTransaction.conf indicating that charging is
not allowed
(Operative)

SuspendedEV When the EVSE is ready to deliver energy but
contactor is open, e.g. the EV is not ready.

Finishing When a charging session has stopped at a
Connector, but the Connector is not yet available
for a new user, e.g. the cable has not been
removed or the vehicle has not left the parking
bay
(Operative)

Reserved When a Connector becomes reserved as a result of
a Reserve Now command
(Operative)

88

Status Condition

Unavailable When a Connector becomes unavailable as the
result of a Change Availability command or an
event upon which the Charge Point transitions to
unavailable at its discretion. Upon receipt of a
Change Availability command, the status MAY
change immediately or the change MAY be
scheduled. When scheduled, the Status
Notification shall be send when the availability
change becomes effective
(Inoperative)

Faulted When a Charge Point or connector has reported
an error and is not available for energy delivery .
(Inoperative).

7.8. ChargingProfile
Class

A ChargingProfile consists of a ChargingSchedule, describing the amount of power or current that can
be delivered per time interval.

Figure 42. Class Diagram: ChargingProfile

89

Field Name Field Type Card. Description

chargingProfileId integer 1..1 Required. Unique
identifier for this
profile.

transactionId integer 0..1 Optional. Only valid if
ChargingProfilePurpose
is set to TxProfile, the
transactionId MAY be
used to match the
profile to a specific
transaction.

stackLevel integer >=0 1..1 Required. Value
determining level in
hierarchy stack of
profiles. Higher values
have precedence over
lower values. Lowest
level is 0.

chargingProfilePurpos
e

ChargingProfilePurpose
Type

1..1 Required. Defines the
purpose of the schedule
transferred by this
message.

chargingProfileKind ChargingProfileKindTyp
e

1..1 Required. Indicates the
kind of schedule.

recurrencyKind RecurrencyKindType 0..1 Optional. Indicates the
start point of a
recurrence.

validFrom DateTime 0..1 Optional. Point in time
at which the profile
starts to be valid. If
absent, the profile is
valid as soon as it is
received by the Charge
Point. Not to be used
when
ChargingProfilePurpose
is TxProfile.

90

Field Name Field Type Card. Description

validTo DateTime 0..1 Optional. Point in time
at which the profile
stops to be valid. If
absent, the profile is
valid until it is replaced
by another profile. Not
to be used when
ChargingProfilePurpose
is TxProfile.

chargingSchedule ChargingSchedule 1..1 Required. Contains
limits for the available
power or current over
time.

7.9. ChargingProfileKindType
Enumeration

Value Description

Absolute Schedule periods are relative to a fixed point in
time defined in the schedule.

Recurring The schedule restarts periodically at the first
schedule period.

Relative Schedule periods are relative to a situation-
specific start point (such as the start of a session)
that is determined by the charge point.

7.10. ChargingProfilePurposeType
Enumeration

Value Description

ChargePointMaxProfile Configuration for the maximum power or current
available for an entire Charge Point.
SetChargingProfile.req message.

TxDefaultProfile Default profile to be used for new transactions.

TxProfile Profile with constraints to be imposed by the
Charge Point on the current transaction. A profile
with this purpose SHALL cease to be valid when
the transaction terminates.

91

7.11. ChargingProfileStatus
Enumeration

Status returned in response to SetChargingProfile.req.

Value Description

Accepted Request has been accepted and will be executed.

Rejected Request has not been accepted and will not be
executed.

NotSupported Charge Point indicates that the request is not
supported.

7.12. ChargingRateUnitType
Enumeration

Unit in which a charging schedule is defined, as used in: GetCompositeSchedule.req and
ChargingSchedule

Value Description

W Watts (power).

A Amperes (current).

7.13. ChargingSchedule
Class

Field Name Field Type Card. Description

duration integer 0..1 Optional. Duration of
the charging schedule in
seconds. If the duration
is left empty, the last
period will continue
indefinitely or until end
of the transaction in
case startSchedule is
absent.

92

Field Name Field Type Card. Description

startSchedule DateTime 0..1 Optional. Starting point
of an absolute schedule.
If absent the schedule
will be relative to start
of charging.

chargingRateUnit ChargingRateUnitType 1..1 Required. The unit of
measure Limit is
expressed in.

chargingSchedulePerio
d

ChargingSchedulePeriod 1..* Required. List of
ChargingSchedulePeriod
elements defining
maximum power or
current usage over time.

minChargingRate decimal 0..1 Optional. Minimum
charging rate supported
by the electric vehicle.
The unit of measure is
defined by the
chargingRateUnit. This
parameter is intended to
be used by a local smart
charging algorithm to
optimize the power
allocation for in the case
a charging process is
inefficient at lower
charging rates. Accepts
at most one digit
fraction (e.g. 8.1)

7.14. ChargingSchedulePeriod
Class

Field Name Field Type Card. Description

startPeriod integer 1..1 Required. Start of the
period, in seconds from
the start of schedule.
The value of StartPeriod
also defines the stop
time of the previous
period.

93

Field Name Field Type Card. Description

limit decimal 1..1 Required. Power limit
during the schedule
period, expressed in
Amperes. Accepts at
most one digit fraction
(e.g. 8.1).

numberPhases integer 0..1 Optional. The number of
phases that can be used
for charging. If a
number of phases is
needed,
numberPhases=3 will be
assumed unless another
number is given.

7.15. CiString20Type
Class

Generic used case insensitive string of 20 characters.

Field Name Field Type Description

cistring20 CiString[20] String is case insensitive.

7.16. CiString25Type
Class

Generic used case insensitive string of 25 characters.

Field Name Field Type Description

cistring25 CiString[25] String is case insensitive.

7.17. CiString50Type
Class

Generic used case insensitive string of 50 characters.

Field Name Field Type Description

ciString50 CiString[50] String is case insensitive.

94

7.18. CiString255Type
Class

Generic used case insensitive string of 255 characters.

Field Name Field Type Description

cistring255 CiString[255] String is case insensitive.

7.19. CiString500Type
Class

Generic used case insensitive string of 500 characters.

Field Name Field Type Description

ciString500 CiString[500] String is case insensitive.

7.20. ClearCacheStatus
Enumeration

Status returned in response to ClearCache.req.

Value Description

Accepted Command has been executed.

Rejected Command has not been executed.

7.21. ClearChargingProfileStatus
Enumeration

Status returned in response to ClearChargingProfile.req.

Value Description

Accepted Request has been accepted and will be executed.

Unknown No Charging Profile(s) were found matching the
request.

95

7.22. ConfigurationStatus
Enumeration

Status in ChangeConfiguration.conf.

Value Description

Accepted Configuration key supported and setting has been
changed.

Rejected Configuration key supported, but setting could not
be changed.

RebootRequired Configuration key supported and setting has been
changed, but change will be available after reboot
(Charge Point will not reboot itself)

NotSupported Configuration key is not supported.

7.23. DataTransferStatus
Enumeration

Status in DataTransfer.conf.

Value Description

Accepted Message has been accepted and the contained
request is accepted.

Rejected Message has been accepted but the contained
request is rejected.

UnknownMessageId Message could not be interpreted due to unknown
messageId string.

UnknownVendorId Message could not be interpreted due to unknown
vendorId string.

7.24. DiagnosticsStatus
Enumeration

Status in DiagnosticsStatusNotification.req.

96

Value Description

Idle Charge Point is not performing diagnostics related
tasks. Status Idle SHALL only be used as in a
DiagnosticsStatusNotification.req that was
triggered by a TriggerMessage.req

Uploaded Diagnostics information has been uploaded.

UploadFailed Uploading of diagnostics failed.

Uploading File is being uploaded.

7.25. FirmwareStatus
Enumeration

Status of a firmware download as reported in FirmwareStatusNotification.req.

Value Description

Downloaded New firmware has been downloaded by Charge
Point.

DownloadFailed Charge point failed to download firmware.

Downloading Firmware is being downloaded.

Idle Charge Point is not performing firmware update
related tasks. Status Idle SHALL only be used as in
a FirmwareStatusNotification.req that was
triggered by a TriggerMessage.req

InstallationFailed Installation of new firmware has failed.

Installing Firmware is being installed.

Installed New firmware has successfully been installed in
charge point.

7.26. GetCompositeScheduleStatus
Enumeration

Status returned in response to GetCompositeSchedule.req.

Value Description

Accepted Request has been accepted and will be executed.

97

Value Description

Rejected Request has not been accepted and will not be
executed.

7.27. IdTagInfo
Class

Contains status information about an identifier. It is returned in Authorize, Start Transaction and Stop
Transaction responses.

If expiryDate is not given, the status has no end date.

Field Name Field Type Description

expiryDate dateTime Optional. This contains the date
at which idTag should be
removed from the Authorization
Cache.

parentIdTag IdToken Optional. This contains the
parent-identifier.

status AuthorizationStatus Required. This contains whether
the idTag has been accepted or
not by the Central System.

7.28. IdToken
Class

Contains the identifier to use for authorization. It is a case insensitive string. In future releases this
may become a complex type to support multiple forms of identifiers.

Field Name Field Type Description

IdToken String[20] Required. IdToken is case
insensitive.

7.29. KeyValue
Class

Contains information about a specific configuration key. It is returned in GetConfiguration.conf.

98

Name Field Type Card. Description

key CiString50Type 1..1 Required.

readonly Boolean 1..1 Required. False if the
value can be set with the
ChangeConfiguration
message.

value CiString500Type 0..1 Optional. If key is
known but not set, this
field may be absent.

7.30. Location
Enumeration

Allowable values of the optional "location" field of a value element in SampledValue.

Value Description

Body Measurement inside body of Charge Point (e.g.
Temperature)

Cable Measurement taken from cable between EV and
Charge Point

EV Measurement taken by EV

Inlet Measurement at network (“grid”) inlet connection

Outlet Measurement at a Connector. Default value

7.31. Measurand
Enumeration

Allowable values of the optional "measurand" field of a Value element, as used in MeterValues.req and
StopTransaction.req messages. Default value of "measurand" is always "Energy.Active.Import.Register"

Value Description

Current.Export Instantaneous current flow from EV

Current.Import Instantaneous current flow to EV

Current.Offered Maximum current offered to EV

Energy.Active.Export.Register Energy exported by EV (Wh or kWh)

Energy.Active.Import.Register Energy imported by EV (Wh or kWh)

99

Value Description

Energy.Reactive.Export.Register Reactive energy exported by EV (varh or kvarh)

Energy.Reactive.Import.Register Reactive energy imported by EV (varh or kvarh)

Energy.Active.Export.Interval Energy exported by EV (Wh or kWh)

Energy.Active.Import.Interval Energy imported by EV (Wh or kWh)

Energy.Reactive.Export.Interval Reactive energy exported by EV. (varh or kvarh)

Energy.Reactive.Import.Interval Reactive energy imported by EV. (varh or kvarh)

Frequency Instantaneous reading of powerline frequency

Power.Active.Export Instantaneous active power exported by EV. (W or
kW)

Power.Active.Import Instantaneous active power imported by EV. (W or
kW)

Power.Factor Instantaneous power factor of total energy flow

Power.Offered Maximum power offered to EV

Power.Reactive.Export Instantaneous reactive power exported by EV. (var
or kvar)

Power.Reactive.Import Instantaneous reactive power imported by EV.
(var or kvar)

RPM Fan speed in RPM

SoC State of charge of charging vehicle in percentage

Temperature Temperature reading inside Charge Point.

Voltage Instantaneous AC RMS supply voltage

7.32. MessageTrigger
Enumeration

Type of request to be triggered in a TriggerMessage.req.

Value Description

BootNotification To trigger a BootNotification request

DiagnosticsStatusNotification To trigger a DiagnosticsStatusNotification request

FirmwareStatusNotification To trigger a FirmwareStatusNotification request

Heartbeat To trigger a Heartbeat request

100

Value Description

MeterValues To trigger a MeterValues request

StatusNotification To trigger a StatusNotification request

7.33. MeterValue
Class

Collection of one or more sampled values in MeterValues.req. All sampled values in a MeterValue are
sampled at the same point in time.

Field Name Field Type Card. Description

timestamp dateTime 1..1 Required. Timestamp
for measured value(s).

sampledValue SampledValue 1..* Required. One or more
measured values

7.34. Phase
Enumeration

Phase as used in SampledValue. Phase specifies how a measured value is to be interpreted. Please note
that not all values of Phase are applicable to all Measurands.

Value Description

L1 Measured on L1

L2 Measured on L2

L3 Measured on L3

N Measured on Neutral

L1-N Measured on L1 with respect to Neutral conductor

L2-N Measured on L2 with respect to Neutral conductor

L3-N Measured on L3 with respect to Neutral conductor

L1-L2 Measured between L1 and L2

L2-L3 Measured between L2 and L3

L3-L1 Measured between L3 and L1

101

7.35. ReadingContext
Enumeration

Values of the context field of a value in SampledValue.

Value Description

Interruption.Begin Value taken at start of interruption.

Interruption.End Value taken when resuming after interruption.

Other Value for any other situations.

Sample.Clock Value taken at clock aligned interval.

Sample.Periodic Value taken as periodic sample relative to start
time of transaction.

Transaction.Begin Value taken at end of transaction.

Transaction.End Value taken at start of transaction.

Trigger Value taken in response to a TriggerMessage.req

7.36. Reason
Enumeration

Reason for stopping a transaction in StopTransaction.req.

Value Description

EmergencyStop Emergency stop button was used.

EVDisconnected disconnecting of cable, vehicle moved away from
inductive charge unit.

HardReset A hard reset command was received.

Local Stopped locally on request of the user at the
Charge Point. This is a regular termination of a
transaction. Examples: presenting an RFID tag,
pressing a button to stop.

Other Any other reason.

PowerLoss Complete loss of power.

Reboot A locally initiated reset/reboot occurred. (for
instance watchdog kicked in)

102

Value Description

Remote Stopped remotely on request of the user. This is a
regular termination of a transaction. Examples:
termination using a smartphone app, exceeding a
(non local) prepaid credit.

SoftReset A soft reset command was received.

UnlockCommand Central System sent an Unlock Connector
command.

DeAuthorized The transaction was stopped because of the
authorization status in a StartTransaction.conf

7.37. RecurrencyKindType
Enumeration

Value Description

Daily The schedule restarts at the beginning of the next
day.

Weekly The schedule restarts at the beginning of the next
week (defined as Monday morning)

7.38. RegistrationStatus
Enumeration

Result of registration in response to BootNotification.req.

Value Description

Accepted Charge point is accepted by Central System.

Pending Central System is not yet ready to accept the
Charge Point. Central System may send messages
to retrieve information or prepare the Charge
Point.

Rejected Charge point is not accepted by Central System.
This may happen when the Charge Point id is not
known by Central System.

7.39. RemoteStartStopStatus
Enumeration

103

The result of a RemoteStartTransaction.req or RemoteStopTransaction.req request.

Value Description

Accepted Command will be executed.

Rejected Command will not be executed.

7.40. ReservationStatus
Enumeration

Status in ReserveNow.conf.

Value Description

Accepted Reservation has been made.

Faulted Reservation has not been made, because
connectors or specified connector are in a faulted
state.

Occupied Reservation has not been made. All connectors or
the specified connector are occupied.

Rejected Reservation has not been made. Charge Point is
not configured to accept reservations.

Unavailable Reservation has not been made, because
connectors or specified connector are in an
unavailable state.

7.41. ResetStatus
Enumeration

Result of Reset.req.

Value Description

Accepted Command will be executed.

Rejected Command will not be executed.

7.42. ResetType
Enumeration

Type of reset requested by Reset.req.

104

Value Description

Hard Full reboot of Charge Point software.

Soft Return to initial status, gracefully terminating any
transactions in progress.

7.43. SampledValue
Class

Single sampled value in MeterValues. Each value can be accompanied by optional fields.

Field Name Field Type Card. Description

value String 1..1 Required. Value as a
“Raw” (decimal)
number or
“SignedData”. Field Type
is “string” to allow for
digitally signed data
readings. Decimal
numeric values are also
acceptable to allow
fractional values for
measurands such as
Temperature and
Current.

context ReadingContext 0..1 Optional. Type of detail
value: start, end or
sample. Default =
“Sample.Periodic”

format ValueFormat 0..1 Optional. Raw or signed
data. Default = “Raw”

measurand Measurand 0..1 Optional. Type of
measurement. Default =
“Energy.Active.Import.R
egister”

105

Field Name Field Type Card. Description

phase Phase 0..1 Optional. indicates how
the measured value is to
be interpreted. For
instance between L1
and neutral (L1-N)
Please note that not all
values of phase are
applicable to all
Measurands. When
phase is absent, the
measured value is
interpreted as an overall
value.

location Location 0..1 Optional. Location of
measurement.
Default=”Outlet”

unit UnitOfMeasure 0..1 Optional. Unit of the
value. Default = “Wh” if
the (default) measurand
is an “Energy” type.

7.44. TriggerMessageStatus
Enumeration

Status in TriggerMessage.conf.

Value Description

Accepted Requested notification will be sent.

Rejected Requested notification will not be sent.

NotImplemented Requested notification cannot be sent because it is
either not implemented or unknown.

7.45. UnitOfMeasure
Enumeration

Allowable values of the optional "unit" field of a Value element, as used in MeterValues.req and
StopTransaction.req messages. Default value of "unit" is always "Wh".

106

Value Description

Wh Watt-hours (energy). Default.

kWh kiloWatt-hours (energy).

varh Var-hours (reactive energy).

kvarh kilovar-hours (reactive energy).

W Watts (power).

kW kilowatts (power).

VA VoltAmpere (apparent power).

kVA kiloVolt Ampere (apparent power).

var Vars (reactive power).

kvar kilovars (reactive power).

A Amperes (current).

V Voltage (r.m.s. AC).

Celsius Degrees (temperature).

Fahrenheit Degrees (temperature).

K Degrees Kelvin (temperature).

Percent Percentage.

7.46. UnlockStatus
Enumeration

Status in response to UnlockConnector.req.

Value Description

Unlocked Connector has successfully been unlocked.

UnlockFailed Failed to unlock the connector.

NotSupported Charge Point has no connector lock.

7.47. UpdateStatus
Enumeration

Type of update for a SendLocalList.req.

107

Value Description

Accepted Local Authorization List successfully updated.

Failed Failed to update the Local Authorization List.

NotSupported Update of Local Authorization List is not
supported by Charge Point.

VersionMismatch Version number in the request for a differential
update is less or equal then version number of
current list.

7.48. UpdateType
Enumeration

Type of update for a SendLocalList.req.

Value Description

Differential Indicates that the current Local Authorization List
must be updated with the values in this message.

Full Indicates that the current Local Authorization List
must be replaced by the values in this message.

7.49. ValueFormat
Enumeration

Format that specifies how the value element in SampledValue is to be interpreted.

Value Description

Raw Data is to be interpreted as integer/decimal
numeric data.

SignedData Data is represented as a signed binary data block,
encoded as hex data.

108

8. Firmware and Diagnostics File Transfer
This section is normative.

The supported transfer protocols are controlled by the configuration key
SupportedFileTransferProtocols. FTP, FTPS, HTTP, HTTPS (CSL)

8.1. Download Firmware
When a Charge Point is notified about new firmware, it needs to be able to download this firmware.
The Central System supplies in the request an URL where the firmware can be downloaded. The URL
also contains the protocol which must be used to download the firmware.

It is recommended that the firmware is downloaded via FTP or FTPS. FTP(S) is better optimized for
large binary data than HTTP. Also FTP(S) has the ability to resume downloads. In case a download is
interrupted, the Charge Point can resume downloading after the part it already has downloaded. The
FTP URL is of format: ftp://user:password@host:port/path in which the parts user:password@,
:password or :port may be excluded.

To ensure that the correct firmware is downloaded, it is RECOMMENDED that the firmware is also
digitally signed.

8.2. Upload Diagnostics
When a Charge Point is requested to upload a diagnostics file, the Central System supplies in the
request an URL where the Charge Point should upload the file. The URL also contains the protocol
which must be used to upload the file.

It is recommended that the diagnostics file is downloaded via FTP or FTPS. FTP(S) is better optimized
for large binary data than HTTP. Also FTP(S) has the ability to resume uploads. In case an upload is
interrupted, the Charge Point can resume uploading after the part it already has uploaded. The FTP
URL is of format: ftp://user:password@host:port/path in which the parts user:password@, :password or
:port may be excluded.

109

9. Standard Configuration Key Names &
Values
Below follows a list of all configuration keys with a role standardized in this specification. The list is
separated by Feature Profiles. A required configuration key mentioned under a particular profile only
has to be supported by the Charge Point if it supports that profile.

For optional Configuration Keys with a boolean type, the following rules apply for the configuration
key in the response to a GetConfiguration.req without a list of keys:

• If the key is present, the Charge Point provides the functionality that is configured by the key, and it
can be enabled or disabled by setting the value for the key.

• If the key is not present, the Charge Point does not provide the functionality that can be configured
by the key.

The "Accessibility" property shows if the value for a certain configuration key is read-only ("R") or
read-write ("RW"). In case the key is read-only, the Central System can read the value for the key using
GetConfiguration, but not write it. In case the the accessibility is read-write, the Central System can
also write the value for the key using ChangeConfiguration.

9.1. Core Profile

9.1.1. AllowOfflineTxForUnknownId

Required/optional optional

Accessibility RW

Type boolean

Description If this key exists, the Charge Point supports Unknown Offline Authorization.
If this key reports a value of true, Unknown Offline Authorization is
enabled.

9.1.2. AuthorizationCacheEnabled

Required/optional optional

Accessibility RW

Type boolean

Description If this key exists, the Charge Point supports an Authorization Cache. If this
key reports a value of true, the Authorization Cache is enabled.

110

9.1.3. AuthorizeRemoteTxRequests

Required/optional required

Accessibility R or RW. Choice is up to Charge Point implementation.

Type boolean

Description Whether a remote request to start a transaction in the form of a
RemoteStartTransaction.req message should be authorized beforehand like
a local action to start a transaction.

9.1.4. BlinkRepeat

Required/optional optional

Accessibility RW

Type int

Unit times

Description Number of times to blink Charge Point lighting when signalling

9.1.5. ClockAlignedDataInterval

Required/optional required

Accessibility RW

Type int

Unit seconds

Description Size (in seconds) of the clock-aligned data interval. This is the size (in
seconds) of the set of evenly spaced aggregation intervals per day, starting
at 00:00:00 (midnight). For example, a value of 900 (15 minutes) indicates
that every day should be broken into 96 15-minute intervals.
When clock aligned data is being transmitted, the interval in question is
identified by the start time and (optional) duration interval value,
represented according to the ISO8601 standard. All "per-period" data (e.g.
energy readings) should be accumulated (for "flow" type measurands such
as energy), or averaged (for other values) across the entire interval (or
partial interval, at the beginning or end of a charging session), and
transmitted (if so enabled) at the end of each interval, bearing the interval
start time timestamp.
A value of "0" (numeric zero), by convention, is to be interpreted to mean
that no clock-aligned data should be transmitted.

111

9.1.6. ConnectionTimeOut

Required/optional required

Accessibility RW

Type int

Unit seconds

Description Interval (from successful authorization) until incipient charging session is
automatically canceled due to failure of EV user to (correctly) insert the
charging cable connector(s) into the appropriate connector(s).

9.1.7. GetConfigurationMaxKeys

Required/optional required

Accessibility R

Type int

Description Maximum number of requested configuration keys in a
GetConfiguration.req PDU.

9.1.8. HeartbeatInterval

Required/optional required

Accessibility RW

Type int

Unit seconds

Description Interval of inactivity (no OCPP exchanges) with central system after which
the Charge Point should send a Heartbeat.req PDU

9.1.9. LightIntensity

Required/optional optional

Accessibility RW

Type int

Unit %

Description Percentage of maximum intensity at which to illuminate Charge Point
lighting

112

9.1.10. LocalAuthorizeOffline

Required/optional required

Accessibility RW

Type boolean

Description whether the Charge Point, when offline, will start a transaction for locally-
authorized identifiers.

9.1.11. LocalPreAuthorize

Required/optional required

Accessibility RW

Type boolean

Description whether the Charge Point, when online, will start a transaction for locally-
authorized identifiers without waiting for or requesting an Authorize.conf
from the Central System

9.1.12. MaxEnergyOnInvalidId

Required/optional optional

Accessibility RW

Type integer

Unit Wh

Description Maximum energy in Wh delivered when an identifier is invalidated by the
Central System after start of a transaction.

9.1.13. MeterValuesAlignedData

Required/optional required

Accessibility RW

Type CSL

Description Clock-aligned measurand(s) to be included in a MeterValues.req PDU, every
ClockAlignedDataInterval seconds

9.1.14. MeterValuesAlignedDataMaxLength

Required/optional optional

113

Accessibility R

Description Maximum number of items in a MeterValuesAlignedData Configuration Key.

9.1.15. MeterValuesSampledData

Required/optional required

Accessibility RW

Type CSL

Description Sampled measurands to be included in a MeterValues.req PDU, every
MeterValueSampleInterval seconds. Where applicable, the Measurand is
combined with the optional phase; for instance: Voltage.L1 Default:
"Energy.Active.Import.Register"

9.1.16. MeterValuesSampledDataMaxLength

Required/optional optional

Accessibility R

Description Maximum number of items in a MeterValuesSampledData Configuration Key.

9.1.17. MeterValueSampleInterval

Required/optional required

Accessibility RW

Type int

Unit seconds

Description Interval between sampling of metering (or other) data, intended to be
transmitted by "MeterValues" PDUs. For charging session data
(ConnectorId>0), samples are acquired and transmitted periodically at this
interval from the start of the charging transaction.
A value of "0" (numeric zero), by convention, is to be interpreted to mean
that no sampled data should be transmitted.

9.1.18. MinimumStatusDuration

Required/optional optional

Accessibility RW

Type int

114

Unit seconds

Description The minimum duration that a Charge Point or Connector status is stable
before a StatusNotification.req PDU is sent to the Central System.

9.1.19. NumberOfConnectors

Required/optional required

Accessibility R

Type int

Description The number of physical charging connectors of this Charge Point.

9.1.20. ResetRetries

Required/optional required

Accessibility RW

Type int

Unit times

Description Number of times to retry an unsuccessful reset of the Charge Point.

9.1.21. ConnectorPhaseRotation

Required/optional required

Accessibility RW

Type CSL

115

Description The phase rotation per connector in respect to the connector’s energy meter
(or if absent, the grid connection). Possible values per connector are:
NotApplicable (for Single phase or DC Charge Points)
Unknown (not (yet) known)
RST (Standard Reference Phasing)
RTS (Reversed Reference Phasing)
SRT (Reversed 240 degree rotation)
STR (Standard 120 degree rotation)
TRS (Standard 240 degree rotation)
TSR (Reversed 120 degree rotation)

R can be identified as phase 1 (L1), S as phase 2 (L2), T as phase 3 (L3). If
known, the Charge Point MAY also report the phase rotation between the
grid connection and the main energymeter by using index number Zero (0).

Values are reported in CSL, formatted: 0.RST, 1.RST, 2.RTS

9.1.22. ConnectorPhaseRotationMaxLength

Required/optional optional

Accessibility R

Description Maximum number of items in a ConnectorPhaseRotation Configuration Key.

9.1.23. StopTransactionOnEVSideDisconnect

Required/optional required

Accessibility RW

Type boolean

Description When set to true, the Charge Point SHALL administratively stop the
transaction when the cable is unplugged from the EV.

9.1.24. StopTransactionOnInvalidId

Required/optional required

Accessibility RW

Type boolean

Description whether the Charge Point will stop an ongoing transaction when it receives
a non- Accepted authorization status in a StartTransaction.conf for this
transaction

116

9.1.25. StopTxnAlignedData

Required/optional required

Accessibility RW

Type CSL

Description Clock-aligned periodic measurand(s) to be included in the TransactionData
element of StopTransaction.req MeterValues.req PDU for every
ClockAlignedDataInterval of the charging session

9.1.26. StopTxnAlignedDataMaxLength

Required/optional optional

Accessibility R

Description Maximum number of items in a StopTxnAlignedData Configuration Key.

9.1.27. StopTxnSampledData

Required/optional required

Accessibility RW

Type CSL

Description Sampled measurands to be included in the TransactionData element of
StopTransaction.req PDU, every MeterValueSampleInterval seconds from the
start of the charging session

9.1.28. StopTxnSampledDataMaxLength

Required/optional optional

Accessibility R

Description Maximum number of items in a StopTxnSampledData Configuration Key.

9.1.29. SupportedFeatureProfiles

Required/optional required

Accessibility R

Type CSL

117

Description A list of supported Feature Profiles. Possible profile identifiers: Core,
FirmwareManagement, LocalAuthListManagement, Reservation,
SmartCharging and RemoteTrigger.

9.1.30. SupportedFeatureProfilesMaxLength

Required/optional optional

Accessibility R

Description Maximum number of items in a SupportedFeatureProfiles Configuration
Key.

9.1.31. TransactionMessageAttempts

Required/optional required

Accessibility RW

Type int

Unit times

Description How often the Charge Point should try to submit a transaction-related
message when the Central System fails to process it.

9.1.32. TransactionMessageRetryInterval

Required/optional required

Accessibility RW

Type int

Unit seconds

Description How long the Charge Point should wait before resubmitting a transaction-
related message that the Central System failed to process.

9.1.33. UnlockConnectorOnEVSideDisconnect

Required/optional required

Accessibility RW

Type boolean

Description When set to true, the Charge Point SHALL unlock the cable on Charge Point
side when the cable is unplugged at the EV.

118

9.1.34. WebSocketPingInterval

Required/optional optional

Accessibility RW

Type int

Unit seconds

Description Only relevant for websocket implementations. 0 disables client side
websocket Ping/Pong. In this case there is either no ping/pong or the server
initiates the ping and client responds with Pong. Positive values are
interpreted as number of seconds between pings. Negative values are not
allowed. ChangeConfiguration is expected to return a REJECTED result.

9.2. Local Auth List Management Profile

9.2.1. LocalAuthListEnabled

Required/optional required

Accessibility RW

Type boolean

Description whether the Local Authorization List is enabled

9.2.2. LocalAuthListMaxLength

Required/optional required

Accessibility R

Type int

Description Maximum number of identifications that can be stored in the Local
Authorization List

9.2.3. SendLocalListMaxLength

Required/optional required

Accessibility R

Type int

Description Maximum number of identifications that can be send in a single
SendLocalList.req

119

9.3. Reservation Profile

9.3.1. ReserveConnectorZeroSupported

Required/optional optional

Accessibility R

Type boolean

Description If this configuration key is present and set to true: Charge Point support
reservations on connector 0.

9.4. Smart Charging Profile

9.4.1. ChargeProfileMaxStackLevel

Required/optional required

Accessibility R

Type int

Description Max StackLevel of a ChargingProfile. The number defined also indicates the
max allowed number of installed charging schedules per Charging Profile
Purposes.

9.4.2. ChargingScheduleAllowedChargingRateUnit

Required/optional required

Accessibility R

Type CSL

Description A list of supported quantities for use in a ChargingSchedule. Allowed values:
'Current' and 'Power'

9.4.3. ChargingScheduleMaxPeriods

Required/optional required

Accessibility R

Type int

Description Maximum number of periods that may be defined per ChargingSchedule.

120

9.4.4. ConnectorSwitch3to1PhaseSupported

Required/optional optional

Accessibility R

Type bool

Description If defined and true, this Charge Point support switching from 3 to 1 phase
during a charging session.

9.4.5. MaxChargingProfilesInstalled

Required/optional required

Accessibility R

Type int

Description Maximum number of Charging profiles installed at a time

121

Appendix A: New in OCPP 1.6
The following changes are made in OCPP 1.6 compared to OCPP 1.5 [OCPP1.5]:

• Smart Charging is added

• A binding to JSON over WebSocket as a transport protocol is added, reducing data usage and
enabling OCPP communication through NAT routers, see: OCPP JSON Specification

• Extra statuses are added to the ChargePointStatus enumeration, giving the CPO and ultimately end-
users more information about the current status of a Charge Point

• Structure of MeterValues.req is changed to eliminate use of XML Attributes, this is needed for
support of JSON (no attribute support in JSON).

• Extra values are added to the Measurand enumeration, giving Charge Point manufacturers the
possibility to send new information to a Central System, such as the State of Charge of an EV

• The TriggerMessage message is added, giving the Central System the possibility to request
information from the Charge Point

• A new Pending member is added to the RegistrationStatus enumeration used in
BootNotification.conf

• More and clearer configuration keys are added, making it clearer to the CPO how to configure the
different business cases in a Charge Point

• The messages and configuration keys are split into profiles, making it easier to implement OCPP
gradually or only in part

• Known ambiguities are removed (e.g. when to use UnlockConnector.req, how to respond to
RemoteStart/Stop, Connector numbering)

A.1. Updated/New Messages:
• BootNotification.req

◦ Change IccId and Imsi to CiString[] to enforce maximum lengths.

• BootNotification.conf

◦ heartbeatInterval to interval, interval now also used for other purposes than heartbeat, need to
fix in spec

◦ Added status Pending

• ChargePointErrorCode

◦ Added enum values: InternalError, LocalListConfict and UnderVoltage

◦ Renamed enum value Mode3Error to EVCommunicationError

• ChargePointStatus

◦ Replaced enum value Occupied with the more detailed values: Preparing, Charging,

122

SuspendedEVSE, SuspendedEV and Finishing

• ChargingRateUnitType

◦ New

• ConfigurationStatus

◦ Added enum RebootRequired

• ClearChargingProfile.req

◦ New

• ClearChargingProfile.conf

◦ New

• DiagnosticsStatus

◦ Added enum Uploading and Idle

• FirmwareStatus

◦ Added enum Downloading, Installing and Idle

• GetCompositeSchedule.req

◦ New

• GetCompositeSchedule.conf

◦ New

• Location

◦ Added enum Cable and EV

• Measurand

◦ Added enum Current.Offered, Frequency, Power.Offered, RPM and SoC

• MeterValues.req

◦ overhaul of complex data structures

◦ Added 'phase' field

• ReadingContext

◦ Added enum Trigger and Other

• RemoteStartTransaction.req

◦ Added ChargingProfile optional

• SendLocalList.req

◦ removed hash

• SendLocalList.conf

◦ removed hash

123

• SetChargingProfile.req

◦ New

• SetChargingProfile.conf

◦ New

• StatusNotification.req

◦ Overhaul of states

◦ New error codes

◦ Connector id 0 can only have status: Available, Unavailable and Faulted.

• StopTransaction.req

◦ added explicit and required stop reason

• TriggerMessage.req

◦ New

• TriggerMessage.conf

◦ New

• UnlockConnector.conf

◦ overhaul of UnlockStatus enum

• UnitOfMeasure

◦ Added Fahrenheit, K, Percent, VA, kVA

◦ Rename Volt to V, Amp to A

124

	Open Charge Point Protocol 1.6
	Table of Contents
	1. Scope
	2. Terminology and Conventions
	2.1. Conventions
	2.2. Definitions
	2.3. Abbreviations
	2.4. References

	3. Introduction
	3.1. Document structure
	3.2. Feature Profiles
	3.3. General views of operation
	3.4. Local Authorization & Offline Behavior
	3.5. Transaction in relation to Energy Transfer Period
	3.6. Transaction-related messages
	3.7. Connector numbering
	3.8. ID Tokens
	3.9. Parent idTag
	3.10. Reservations
	3.11. Vendor-specific data transfer
	3.12. Smart Charging
	3.13. Time zones

	4. Operations Initiated by Charge Point
	4.1. Authorize
	4.2. Boot Notification
	4.3. Data Transfer
	4.4. Diagnostics Status Notification
	4.5. Firmware Status Notification
	4.6. Heartbeat
	4.7. Meter Values
	4.8. Start Transaction
	4.9. Status Notification
	4.10. Stop Transaction

	5. Operations Initiated by Central System
	5.1. Cancel Reservation
	5.2. Change Availability
	5.3. Change Configuration
	5.4. Clear Cache
	5.5. Clear Charging Profile
	5.6. Data Transfer
	5.7. Get Composite Schedule
	5.8. Get Configuration
	5.9. Get Diagnostics
	5.10. Get Local List Version
	5.11. Remote Start Transaction
	5.12. Remote Stop Transaction
	5.13. Reserve Now
	5.14. Reset
	5.15. Send Local List
	5.16. Set Charging Profile
	5.17. Trigger Message
	5.18. Unlock Connector
	5.19. Update Firmware

	6. Messages
	6.1. Authorize.req
	6.2. Authorize.conf
	6.3. BootNotification.req
	6.4. BootNotification.conf
	6.5. CancelReservation.req
	6.6. CancelReservation.conf
	6.7. ChangeAvailability.req
	6.8. ChangeAvailability.conf
	6.9. ChangeConfiguration.req
	6.10. ChangeConfiguration.conf
	6.11. ClearCache.req
	6.12. ClearCache.conf
	6.13. ClearChargingProfile.req
	6.14. ClearChargingProfile.conf
	6.15. DataTransfer.req
	6.16. DataTransfer.conf
	6.17. DiagnosticsStatusNotification.req
	6.18. DiagnosticsStatusNotification.conf
	6.19. FirmwareStatusNotification.req
	6.20. FirmwareStatusNotification.conf
	6.21. GetCompositeSchedule.req
	6.22. GetCompositeSchedule.conf
	6.23. GetConfiguration.req
	6.24. GetConfiguration.conf
	6.25. GetDiagnostics.req
	6.26. GetDiagnostics.conf
	6.27. GetLocalListVersion.req
	6.28. GetLocalListVersion.conf
	6.29. Heartbeat.req
	6.30. Heartbeat.conf
	6.31. MeterValues.req
	6.32. MeterValues.conf
	6.33. RemoteStartTransaction.req
	6.34. RemoteStartTransaction.conf
	6.35. RemoteStopTransaction.req
	6.36. RemoteStopTransaction.conf
	6.37. ReserveNow.req
	6.38. ReserveNow.conf
	6.39. Reset.req
	6.40. Reset.conf
	6.41. SendLocalList.req
	6.42. SendLocalList.conf
	6.43. SetChargingProfile.req
	6.44. SetChargingProfile.conf
	6.45. StartTransaction.req
	6.46. StartTransaction.conf
	6.47. StatusNotification.req
	6.48. StatusNotification.conf
	6.49. StopTransaction.req
	6.50. StopTransaction.conf
	6.51. TriggerMessage.req
	6.52. TriggerMessage.conf
	6.53. UnlockConnector.req
	6.54. UnlockConnector.conf
	6.55. UpdateFirmware.req
	6.56. UpdateFirmware.conf

	7. Types
	7.1. AuthorizationData
	7.2. AuthorizationStatus
	7.3. AvailabilityStatus
	7.4. AvailabilityType
	7.5. CancelReservationStatus
	7.6. ChargePointErrorCode
	7.7. ChargePointStatus
	7.8. ChargingProfile
	7.9. ChargingProfileKindType
	7.10. ChargingProfilePurposeType
	7.11. ChargingProfileStatus
	7.12. ChargingRateUnitType
	7.13. ChargingSchedule
	7.14. ChargingSchedulePeriod
	7.15. CiString20Type
	7.16. CiString25Type
	7.17. CiString50Type
	7.18. CiString255Type
	7.19. CiString500Type
	7.20. ClearCacheStatus
	7.21. ClearChargingProfileStatus
	7.22. ConfigurationStatus
	7.23. DataTransferStatus
	7.24. DiagnosticsStatus
	7.25. FirmwareStatus
	7.26. GetCompositeScheduleStatus
	7.27. IdTagInfo
	7.28. IdToken
	7.29. KeyValue
	7.30. Location
	7.31. Measurand
	7.32. MessageTrigger
	7.33. MeterValue
	7.34. Phase
	7.35. ReadingContext
	7.36. Reason
	7.37. RecurrencyKindType
	7.38. RegistrationStatus
	7.39. RemoteStartStopStatus
	7.40. ReservationStatus
	7.41. ResetStatus
	7.42. ResetType
	7.43. SampledValue
	7.44. TriggerMessageStatus
	7.45. UnitOfMeasure
	7.46. UnlockStatus
	7.47. UpdateStatus
	7.48. UpdateType
	7.49. ValueFormat

	8. Firmware and Diagnostics File Transfer
	8.1. Download Firmware
	8.2. Upload Diagnostics

	9. Standard Configuration Key Names & Values
	9.1. Core Profile
	9.2. Local Auth List Management Profile
	9.3. Reservation Profile
	9.4. Smart Charging Profile

	Appendix A: New in OCPP 1.6
	A.1. Updated/New Messages:

